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Abstract
We construct an unbounded representative for the shriek
class associated to the embedding ι : S1 ↪→ R2 as defined
in [CS84] and equip this KK1(C(S1), C0(R2)) cycle with a
connection. Using this connection, we compute the prod-
uct ι! ⊗ [R2] and prove that this provides an unbounded
KK1(C(S1),C) cycle. In this product we identify an in-
dex class in KK0(C,C) which represents the multiplica-
tive unit. We then show that the product ι! ⊗ [R2] repre-
sents the product of the fundamental class of S1 with the
index class using Kucerovsky’s criterion [Kuc96].

1



Contents

1 Introduction 4

2 C∗-algebraic Preliminaries 6
2.1 Fredholm Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Hilbert C∗-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Unbounded Operators . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Introduction to bounded KK-theory 16
3.1 Definition of KKi(A,B) . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The Kasparov Product . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 The Index Pairing: KK0(C,C) = Z . . . . . . . . . . . . . . . . . . 20

4 Unbounded KK theory 24
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Unbounded Product: Kucerovsky . . . . . . . . . . . . . . . . . . . 26
4.3 Unbounded Connections . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 The Canonical Spectral Triple of a Manifold . . . . . . . . . . . . . 28

5 Immersion module 34
5.1 Analytical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Homotopy of bounded transform to shriek class . . . . . . . . . . . 37

6 Index Class 41
6.1 Self-adjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Compact Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Multiplicative Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Product of Immersion module with R2 51
7.1 Form of the product operator . . . . . . . . . . . . . . . . . . . . . 52
7.2 Self-adjointness of product operator . . . . . . . . . . . . . . . . . . 55
7.3 Compact Resolvent of product operator . . . . . . . . . . . . . . . . 61
7.4 The Kasparov product of ι̃! and [R2] . . . . . . . . . . . . . . . . . 64
7.5 The Kasparov Product of S1 and the Index Class . . . . . . . . . . 64

8 Discussion 67

References 69

2



3



1 Introduction

In the 1930’s Israel Gelfand showed that any commutative C∗-algebra is isomet-
rically isomorphic to C(X) for a locally compact Hausdorff topological space X.
Conversely every locally compact Hausdorff topological space X induces a C∗-
algebra C(X), and these processes are inverse to each other, up to isomorphism
or homeomorphism. This means that we can essentially do topology (of locally
compact Hausdorff spaces) in terms of the continuous function algebra, instead of
the usual point-set appraoch.

It turns out that many topological constructions, when formulated in terms of
the corresponding commutative algebra, can be generalized to non-commutative
algebras. One of these constructions is K-theory. In topological terms it studies
the equivalence classes of vector bundles over the space X, which together with
the Whitney sum of vector bundles form a semi-group.

The concept of vector bundles can be translated into algebraic language using
the Serre-Swan theorem [Bla98, Ch. 1], by considering projections in the infinite
matrix algebra M∞(C(X)). Since this construction using projections also makes
sense in a non-commutative context we find a “topological invariant” associated
to a non-commutative algebra.

Translating topological constructions into constructions on non-commutative al-
gebras is the core idea of non-commutative geometry. However, so far we have
been discussing topology rather than geometry. The crucial step to geometry is
the inclusion of a Dirac operator into the data, as demonstrated by Alain Connes
[Con94].

In this view of geometry we encode a manifold in terms of a commutative algebra
of smooth functions, a Hilbert space of spinors and a Dirac operator as we further
explore in Section 4.4. This paves the way for non-commutative geometry by
replacing the smooth functions with a certain class of non-commutative algebras
and combining them with Dirac-type operators.

These so called spectral triples are examples of KK classes, which in turn are
elements of a generalization of K-theory called Kasparov’s KK-theory. This opens
up the application of several constructions from KK-theory to non-commutative
geometry. Prime example of such a construction is the shriek class f! associated to a
smooth map f : M → N as described in [CS84]. While [CS84] nominally deals with
bounded KK-theory, the constructions are very much unbounded in character.
This makes the shriek class especially interesting from a noncommutative geometry
standpoint.

In [KS16] J. Kaad and W. van Suijlekom investigate this shriek class for submer-
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sions π : M → B in terms of unbounded KK-theory. The use of unbounded
KK-theory is of interest here, since it allows us to investigate the geometric as-
pect of the immersion whereas bounded KK-theory is topological in nature. They
construct an unbounded representative for the shriek class using a “vertical Dirac
operator” Dπ and prove that the spectral triple of the source manifold M factor-
izes into this vertical Dirac operator and the spectral triple of the base manifold
B, up to a term coming from the curvature of the submersion.

Since the construction of the shriek class simplifies significantly in the cases of
submersions and immersions relative to arbitrary maps, it is natural to now try
to construct an unbounded representative for the shriek class ι! of an immersion
ι : M → N and to prove analogous statements for ι! as we did for submersions.
In this thesis we will construct an unbounded representative for the shriek class of
the immersion ι : S1 ↪→ R2 which functions as a toy model for the general case.

Different from the case of submersions, where, essentially, new dimensions are
added to the KK-cycles we need to remove dimensions. We find that the way to
move down from the “large object” ι!⊗ [R2] to the “small” object [S1] is an index
class in KK0(C,C). This is a new phenomenon compared to the submersion case,
and plays a crucial rôle in our work.

The setup of this thesis is as follows. We spend the first chapters introducing the
required concepts from KK-theory, starting with some preliminaries and moving
on to the essentials of bounded and unbounded KK-theory. Then in chapter
5 we introduce our unbounded representative for the shriek class and prove the
required analytical properties. As in [KS16] this construction is based on the
bounded variant constructed in [CS84].

In chapter 6 we investigate a specific representative of the multiplicative unit in
KK0(C,C). This Index class is necessary to prove our analogue of the factorization
result for submersions. It will turn out that we find that the Dirac operator on
the product of ι! and the triple of R2 is the Dirac operator of S1 plus a term
corresponding to this unit element.

Finally, in chapter 7 we prove that the shriek class ι! indeed provides a KK-
theoretic factorization of the spectral triple S1 into ι! and the spectral triple of R2

using unbounded KK-theoretic techniques from [Kuc96]. We actually already get
this by proving that our unbounded representative indeed represents the shriek
class, but proving this purely in an unbounded setting provides more geometric
insight.
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2 C∗-algebraic Preliminaries

In this section we will introduce several C∗-algebra related notions we will need to
introduce KK-theory and prove our later results. We assume the reader has basic
familiarity with C∗-algebras and Hilbert spaces and their (unbounded) operators,
such as the background from Masters courses in Functional Analysis and Operator
Algebras. We also assume basic familiarity with differential geometry, although
this is only really used in Section 4.4.

Before we start let us introduce some notation.

Notation 2.1. Let H be a Hilbert space, write L(H) for the bounded linear oper-
ators H → H and write K(H) for the compact operators H → H.

When writing tensor products of e.g. Hilbert spaces we write H⊗algK for the
algebraic tensor product of H and K. Whenever we write H ⊗ K we mean the
completion of the algebraic tensor product in the norm associated to the inner
product 〈ψ ⊗ φ, ξ ⊗ ζ〉 = 〈ψ, ξ〉〈φ, ζ〉.

Whenever we take tensor products of C∗-algebra one of the components is finite
dimensional. Therefore A⊗algB is already again a C∗-algebra and we simply write
A⊗B.

Finally, we write Cln for the Clifford algebra generated by Cn with quadratic form
corresponding to the standard euclidean inner product, see e.g. [Sui15, Ch. 4.1]
for the appropriate definitions.

2.1 Fredholm Operators

While Fredholm Operators will not make any explicit appearances outside of sec-
tion 3.3, where we prove KK0(C,C) ∼= Z, their properties provide some intuition
behind the definitions in KK-theory. The most notable of these properties is the
existence of an “Index”, which (in various generalizations) pops up throughout K
and KK theory.

Since we will use Fredholm operators only briefly, our introduction of them will be
very concise. More comprehensive introductions can be found in e.g. [Mur14, Ch.
1.4] or probably your favourite textbook on functional analysis.

Definition 2.2. Let H1, H2 be Hilbert spaces. A bounded, linear operator F :
H1 → H2 is called Fredholm if dim(ker(F )) and dim(coker(F )) are finite. Define
the Index of F to be Index(F ) = dim(ker(F ))− dim(coker(F )).

Theorem 2.3 (Atkinson). Let H be a Hilbert space and F ∈ L(H). Then F is
Fredholm if and only if there exists S ∈ L(H) such that 1 − SF ∈ K(H) and

6



1− FS ∈ K(H).

Proof. See [Mur14, Thm. 1.4.16]

The operator S appearing in Theorem 2.3 is called a parametrix for F . In the
next section we will generalize the definition of Fredholm operators from Hilbert
spaces to Hilbert C∗-modules using the existence of a parametrix.

We will now list some nice properties of Fredholm operators.

Proposition 2.4. Let F : H1 → H2 and G : H2 → H3 be Fredholm and let
X ⊂ L(H) be the set of all Fredholm operators. Then

• F ∗ is Fredholm and Index(F ∗) = − Index(F ).

• GF is Fredholm and Index(GF ) = Index(G) + Index(F ).

• The map Index : X → Z is continuous relative to the norm topology.

• The Index is stable under compact perturbations.

• The Index of an invertible operator is 0, conversely a Fredholm operator with
Index 0 is a compact perturbation of an invertible operator.

Proof. The proofs for all these statements can be found in [Mur14, Ch. 1.4].

2.2 Hilbert C∗-modules

One of the main ingredients of a representative of a KK-class is a graded Hilbert
bimodule, which we will introduce in this section mainly based on [Lan98, Ch. 3]
and [Lan95] although we will generally use different notation. We will start by
introducing Hilbert modules, then move on to Hilbert bimodules and finally we
discuss gradings on both Hilbert bimodules and C∗-algebras.

A Hilbert C∗-module is essentially a generalization of a Hilbert space, where we
replace the complex numbers by an arbitrary C∗-algebra. Many notions familiar
from Hilbert spaces have analogues for Hilbert modules, although many theorems
require various extra assumptions. Most of these assumptions are to deal with the
fact that closed sub-modules may not be orthogonally complemented, as shown in
Example 2.9.

Definition 2.5. Let B be a C∗-algebra. A pre-Hilbert B-module consists of

• a complex linear space E,
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• a right-representation π of B on E as linear operators, i.e. for ψ ∈ E,
b1, b2 ∈ B

π(b1b2)ψ = π(b2)π(b1)ψ,

we will usually write π(b)ψ as ψ · b.

• a map 〈·, ·〉E : E × E → B which is C-linear in the second argument and
conjugate C-linear in the first, and satisfies

〈ψ, φ〉∗E = 〈φ, ψ〉,
〈ψ, φ · b〉E = 〈ψ, φ〉Eb,
〈ψ, ψ〉E ≥ 0,

〈ψ, ψ〉E = 0 ⇐⇒ ψ = 0,

with ψ, φ ∈ E and b ∈ B. We call this sesquilinear form the inner product
on E.

If additionally E is complete in the norm ||ψ||2E := ||〈ψ, ψ〉||B we say that E is a
Hilbert B-module.

It is common to build Hilbert modules out of pre-Hilbert modules, therefore the
following Lemma is useful.

Lemma 2.6. Any pre-Hilbert module can be completed into a Hilbert module.

Proof. This is [Lan98, Cor. 3.2.4]. If E is a pre-Hilbert module, the completed
Hilbert module is just the completion of E in the inner product norm with the
representation and inner product extended by continuity.

One of the first major differences between Hilbert modules and Hilbert spaces
appears in their bounded operators. On a Hilbert module not all bounded maps
have an adjoint, this leads us to the following definition.

Definition 2.7. Suppose E and F are Hilbert B-modules. A map a : E → F is
called adjointable if there exists a map a∗ : F → E such that

〈aψ, φ〉F = 〈ψ, a∗φ〉E .

The set of all adjointable maps is denoted L(E ,F), if F = E we write L(E) instead.

Adjointable maps are automatically bounded and B-linear and behave similar to
the bounded linear operators on a Hilbert space. Indeed L(E) is a C∗-algebra.
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Theorem 2.8. Let E be a Hilbert B-module. Any element a ∈ L(E) is linear,
B-linear and bounded. The adjoint is unique and defines an involution on L(E).
When equipped with the operator norm L(E) is a C∗-algebra.

Proof. This is [Lan98, Thm. 3.2.5]. Note that Landsman writes C∗(E , B) for
L(E).

We will now give an example of a Hilbert module with a bounded map that is not
adjointable.

Example 2.9. Let X be a compact Hausdorff space and Y ⊂ X a non-empty
closed subset with dense complement.

The C∗-algebra C(X) is a Hilbert C(X)-module with inner product 〈f, g〉C(X) =
f ∗g (in fact, any C∗-algebra A is a Hilbert A-module over itself with this inner
product). Define E = {f ∈ C(X)|f(Y ) = 0}, this is also a Hilbert C(X)-module
with inner product 〈f, g〉E = f ∗g. For both Hilbert modules the right representation
is simply multiplication on the right.

Consider E as a submodule of C(X), we will show that E⊥⊥ 6= E and E ⊕ E⊥ 6=
C(X) even though E is closed.

Let g ∈ E⊥, then we must have g(x) = 0 for x ∈ X \ Y so by continuity g = 0.
Hence E⊥ = {0}, so E⊥⊥ = C(X) and E ⊕ E⊥ = E.

This also breaks adjointability of maps. Let ι : E → C(X) be the inclusion map,
which is clearly bounded and C(X)-linear. Suppose ι∗ exists, and consider ι∗(1).
Then for x ∈ X

f ∗(x)ι∗(1)(x) = 〈f, ι∗1〉E(x),

= 〈ιf, 1〉C(X)(x),

= f ∗(x).

This implies that ι∗(1) is constant 1 on X \ Y , so by continuity ι∗(1) would have
to be 1 everywhere, but this is not an element of E.

Besides an analogue of the bounded operators on a Hilbert space we would like an
analogue of the compact operators on a Hilbert space. We do this using the prop-
erty of Hilbert spaces that compact operators are limits of finite rank operators.

Definition 2.10. Let E ,F be Hilbert B-modules and ψ ∈ E, φ ∈ F . Define
|φ〉〈ψ| : E → F by

|φ〉〈ψ|ζ = φ · 〈ψ, ζ〉E .
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This is an element of L(E ,F). Define the set of finite rank operators to be the
linear span of these |φ〉〈ψ|.

Lemma 2.11. Let E ,F , E ′ be Hilbert B-modules and ψ ∈ E, φ, ξ ∈ F and ζ ∈ E ′.
Furthermore, let a ∈ L(F , E ′), b ∈ B, c ∈ L(F) then

• (|φ〉〈ψ|)∗ = |ψ〉〈φ|,

• |ζ〉〈ξ| ◦ |φ〉〈ψ| = |ζ · 〈ξ, φ〉F〉〈ψ|,

• a|φ〉〈ψ| = |aφ〉〈ψ|.

Proof. These all follow immediately from Definition 2.10.

Definition 2.12. Let E and F be Hilbert B-modules. We define the set of compact
operators between E and F as the norm-closure of the linear span of the finite rank
operators and denote it K(E ,F). If F = E we write K(E) = K(E , E).

Recall that the compact operators on a Hilbert space form an ideal in the bounded
operators, the properties listed in Lemma 2.11 imply that this is also the case for
Hilbert modules.

Finally, we need one technical property of Hilbert modules.

Definition 2.13. A Hilbert B-module E is countably generated if there is a count-
able subset E ⊂ E such that E ·B generates a dense subset of E.

We are now ready to move on to Hilbert bimodules. Since we have found L(E)
as a generalization of B(H), i.e. a C∗-algebra of operators on E , it is natural to
consider representations of other C∗-algebras on E . This leads us to the definition
of Hilbert bimodules.

Definition 2.14. Let A and B be C∗-algebras. A Hilbert A-B-bimodule consists
of a Hilbert B-module E together with a C∗-homomorphism Φ : A → L(E). We
will usually suppress the representation Φ in our notation and write Φ(a)ψ = a ·ψ
for a ∈ A and ψ ∈ E. We use AEB to denote a Hilbert A-B-bimodule.

In [Lan98] Hilbert C∗-bimodules are instead called C∗-correspondences, hinting at
the idea that Hilbert bimodules are in some sense “maps” between C∗-algebras.
In any case, maps between C∗-algebras induce C∗-bimodules.

Example 2.15. Let Φ : A → B be a C∗-homomorphism. Define a Hilbert B-
module by setting E = B with 〈b1, b2〉E = b∗1b2 and right-action by multiplication
on the right. By the C∗-identity the norm on E coincides with the norm on B so
that E is indeed complete.
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We make E into a Hilbert A-B module by defining a left-action by a · b = Φ(a)b.
Denote this bimodule by ΦB.

This idea that bimodules are maps can be made more concrete, and is very relevant
when considering for example Morita equivalance of C∗-algebras. However, it is
not immediately relevant to our further discussion so we will simply use it as a
motivation for certain constructions. One such construction is the balanced tensor
product of bimodules, which corresponds to composition of maps.

Theorem 2.16. Let A, B and C be C∗-algebras, and AEB, BFC Hilbert bimodules.
Define IB to be the ideal in E⊗algF generated by elements of the form ψ · b⊗ φ−
ψ ⊗ b · φ. Then (E⊗algF)/IB is a pre-Hilbert C-module with right action

[ψ ⊗ φ] · c = [ψ ⊗ φ · c]

and inner product

〈[ψ ⊗ φ], [ξ ⊗ ζ]〉E⊗BF = 〈φ, 〈ψ, ξ〉E · ζ〉F .

Define E ⊗B F to be the completion of (E⊗algF)/IB. Then E ⊗B F is a Hilbert
C-module.

Furthermore, L(E) embeds in L(E ⊗B F) by F 7→ F ⊗ 1, i.e.

F (ψ ⊗ φ) = F (ψ)⊗ φ.

Combining the representation of A with this embedding E ⊗B F becomes a Hilbert
A-C-bimodule.

Proof. That (E⊗algF)/IB defines a pre-Hilbert C-module is proven in [Lan98,
Prop. 4.5], then by Lemma 2.6 E ⊗B F is a Hilbert C-module. Since F ∈ L(E)
is required to be B-linear, F ⊗ 1 is well defined and it is an easy check that
F ∗ ⊗ 1 = (F ⊗ 1)∗ so that F ⊗ 1 is indeed adjointable.

Remark 2.17. We still write ψ⊗φ for elementary tensors in E ⊗BF even though
they really are equivalence classes of such elements.

This product has many nice properties, which we will not prove as we do not rely
on them later. For example, the product is associative up to unitary equivalence
and for C∗-homomorphisms Φ : A→ B, Ψ : B → C such that Ψ(B)C is dense in
C we have that Ψ◦ΦC is unitarily equivalent to ΦB ⊗B ΨC.

Finally, we introduce gradings. First on C∗-algebras, then on Hilbert bimodules.

Definition 2.18. Let A be a C∗-algebra. A grading is given by a C∗-automorphism
γ : A→ A satisfying γ2 = 1.
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This induces a direct sum decomposition A = A0 ⊕ A1 where A0 = {a ∈ A|γ(a) =
a} and A1 = {a ∈ A|γ(a) = −a}. Indeed we have a = a0+a1 with a0 = 1

2
(a+γ(a)),

a1 = 1
2
(a− γ(a)).

Elements a ∈ Ai are called homogeneous of degree i. We denote the degree of
a homogeneous element a ∈ Ai by ∂a = i. Note that AiAj ⊂ Ai+j mod 2. We
sometimes call A0 the even part and A1 the odd part of the C∗-algebra.

When considering graded C∗-algebras the commutator is defined differently from
what one might expect. For homogeneous elements we set

[a, b] = ab− (−1)∂a·∂bba.

The commutator of general elements follows by linearity.

A homomorphism of graded C∗-algebras must preserve the grading, i.e. φ : A→ B
is a homomorphism between graded C∗-algebras A and B whenever φ is a C∗-
homomorphism and φ(Ai) ⊂ Bi (alternatively γ ◦ φ = φ ◦ γ). We say that a
C∗-algebra is trivially graded if γ = 1 or equivalently A0 = A.

Remark 2.19. Whenever we deal with gradings we will use the “automorphism
picture” and “decomposition picture” interchangeably since some properties are
simply more convenient in one of the two pictures.

Definition 2.20. Let A and B be (possibly trivially) graded C∗-algebras. A graded
Hilbert A-B bimodule is a regular Hilbert A-B bimodule E together with a linear
operator γ : E → E such that γ2 = 1 and

• 〈γ(ψ), γ(φ)〉E = γ(〈ψ, φ〉E),

• γ(ψ · b) = γ(ψ) · γ(b).

In the decomposition picture using the ±1-eigenspaces of γ as in Definition 2.18
these requirements are

• 〈E i, E j〉E ⊂ Bi+j mod 2,

• E i ·Bj ⊂ E i+j mod 2.

If E is graded then L(E) becomes a graded C∗-algebra by setting γ(F )ψ = γ(Fγ(ψ))
for F ∈ L(E). In this grading we have L(E)iE j ⊂ E i+j mod 2.

We then require the C∗-homomorphism Φ : A → L(E) from the bimodule to be a
homomorphism of graded C∗-algebras.

Theorem 2.21. Let A, B and C be graded C∗-algebras and E and F be graded
Hilbert A-B and B-C bimodules respectively with grading operators γE and γF .
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Then E ⊗B F from Theorem 2.16 with grading γE ⊗ γF defines a graded Hilbert
A-C bimodule.

Proof. In the decomposition picture we find that

(E ⊗B F)0 = E0 ⊗B F0 ⊕ E1 ⊗B F1,

(E ⊗B F)1 = E0 ⊗B F1 ⊕ E1 ⊗B F0.

It is then a straightforward case-by-case verification that E⊗BF is a graded Hilbert
bimodule with grading γE ⊗ γF .

We will later have use for the following construction.

Definition 2.22. Let AEB be a graded Hilbert bimodule, then the opposite module

AEopB is the same linear space E but with grading γEop = −γE and representations
a · ψop = (γ(a) · ψ)op, ψop · b = (ψ · b)op.

2.3 Unbounded Operators

Unbounded operators on Hilbert modules suffer from the same problem as bounded
operators. Where on a Hilbert space any densely defined closable operator has a
densely defined adjoint, this fails for Hilbert modules. Although much theory
carries over, it is usually with additional assumptions to guarantee existence, and
in some sense well-behavedness, of the adjoint.

Definition 2.23. Let E, F be Hilbert B-modules. We write T : dom(T ) ⊂ E → F
for a B-linear map from a submodule dom(T ) ⊂ E to F , we call dom(T ) the
domain of T . If it is clear in which module the domain of T lives we abbreviate
this to T : dom(T )→ F .

Let T : dom(T ) ⊂ E1 → E2, S : dom(T ) ⊂ E1 → E2 and R : dom(R) ⊂ E2 → E3 we
write

• T ⊂ S if dom(T ) ⊂ dom(S) and Tψ = Sψ for all ψ ∈ dom(T ).

• T + S : dom(T + S) → E2 where dom(T + S) = dom(T ) ∩ dom(S) and
(T + S)ψ = Tψ + Sψ for all ψ ∈ dom(T + S).

• RT : dom(RT ) → E3 where dom(RT ) = {ψ ∈ dom(T )|Tψ ∈ dom(R)} and
(RT )ψ = R(T (ψ)) for all ψ ∈ dom(RT ).

We say that T : dom(T ) ⊂ E → F is densely defined if dom(T ) is dense in E.
We say that T is closed if

G(T ) := {(ψ, Tψ)|ψ ∈ dom(T )} ⊂ E1 ⊕ E2

is a closed submodule. We call G(T ) the graph of T .
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We define the adjoint of an operator T : dom(T ) ⊂ E → F the same way we do
for Hilbert spaces.

Definition 2.24. Let E and F be Hilbert B-modules and T : dom(T ) ⊂ E → F .
Define

dom(T ∗) := {φ ∈ F | ∃ξ ∈ E : 〈Tψ, φ〉F = 〈ψ, ξ〉E∀ψ ∈ dom(T )}

If φ ∈ dom(T ∗) the corresponding ξ is unique and T ∗φ = ξ defines a B-linear map.

For v : E ⊕ F → F ⊕ E , v(ψ, φ) = (φ,−ψ) we have G(T ∗) = vG(T )⊥, as in
Hilbert spaces. But if we were working in Hilbert spaces we would have that if
T were closed, T ∗ was densely defined and G(T ) ⊕ vG(T ∗) = E ⊕ F . On Hilbert
modules, this is not necessarily true. This is the crucial difference between the
theory on Hilbert modules and Hilbert spaces, tracing back to the possibility that
closed subspaces are not orthogonally complemented we saw in Example 2.9. This
is exactly what regularity is intended to fix.

Definition 2.25. Let E and F be Hilbert B-modules. An operator T : dom(T ) ⊂
E → F is regular if T ∗ is densely defined and 1 + T ∗T has dense range.

Theorem 2.26. Let E and F be Hilbert B-modules. If T : dom(T ) ⊂ E → F is
a regular operator, then G(T ) ⊕ v∗G(T ∗) = E ⊕ F . Here v : F ⊕ E → E ⊕ F ,
(φ, ψ) 7→ (ψ,−φ).

Proof. This is [Lan95, Thm. 9.3].

Corollary 2.27. If T : dom(T )→ F is regular, it is closed.

Proof. Suppose E is a Hilbert B-module and X ⊕X⊥ = E . Then X⊥⊥ = X, so X
is closed. If T is regular, G(T ) ⊕ G(T )⊥ = G(T ) ⊕ v∗G(T ∗) = E ⊕ F , so G(T ) is
closed.

There is also a partial converse.

Theorem 2.28. Let E and F be Hilbert B-modules. If T : dom(T ) ⊂ E → F is
closed, T ∗ is densely defined and G(T )⊕ v∗G(T ∗)⊥ = E ⊕ F , then T is regular.

Proof. This is [Lan95, Prop. 9.5]

A useful, and for us essential, property of regular operators is the existence of a
bounded transform.

Proposition 2.29. Let E be a Hilbert B-module and T : dom(T ) ⊂ E → E regular.

Then (1 + T ∗T )−1 and T (1 + T ∗T )−
1
2 extend to bounded operators in L(E).

Proof. See [Bla98, Par. 13.3].
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Definition 2.30. If T : dom(T ) ⊂ E → E is a regular operator we define the oper-

ator b(T ) as the extension of T (1 +T ∗T )−
1
2 . We call b(T ) the bounded transform

of T .

Finally we will need to know what it means for an operator T : dom(T )E → E to
be self-adjoint. Fortunately this is again the same definition as for Hilbert spaces.

Definition 2.31. Let E be a Hilbert B-module. We say that T : dom(T ) ⊂ E → E
is symmetric if T ⊂ T ∗ and self-adjoint if T = T ∗. We say that a closable operator
T is essentially self-adjoint if the closure of T is self-adjoint.

The main result we will use to prove self-adjointness of operators carries over
directly from the Hilbert space setting.

Theorem 2.32. Let E be a Hilbert B-module and suppose T : dom(T ) ⊂ E →
E. Then T is regular and essentially self-adjoint if T is symmetric and T ± i :
dom(T )→ E have dense range.

Proof. Since (1 + T ∗T ) = (T ∗ + i)(T − i) ⊃ (T + i)(T − i), it has dense range so
T is regular. Essential self-adjointness now follows with the same proof as in the
Hilbert space setting which can be found in e.g. [Lax02, Thm 33.2].
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3 Introduction to bounded KK-theory

3.1 Definition of KKi(A,B)

We will now introduce, often without proof, the essential definitions and results
from KK-theory that are required for our later analysis. There are many reasons
and ways to do KK-theory, but we will only provide the framework that is useful
for the applications we need. A more complete and detailed introduction can
be found in e.g. [Bla98] or [Hig90]. As a standing assumption we assume all
C∗-algebras are separable and all Hilbert C∗-modules are countably generated.

Definition 3.1. Let A, B be (possibly graded) C∗-algebras. The set kk0(A,B) is
defined to be the set of triples (E , F ) where

• E is a graded A-B Hilbert C∗-module,

• F : E → E is an bounded adjointable operator of degree 1,

• a(F 2 − 1), a(F ∗ − F ) and aF − Fa are compact.

We call (E , F ) ∈ kk0(A,B) an even Kasparov A-B cycle or A-B cycle for short.

Remark 3.2. Later on we will also encounter the notion of an odd Kasparov A-B
cycle. We will usually omit the qualifier even/odd from our language for brevity
and trust that it is clear from the context whether the cycle is even or odd.

Definition 3.3. Two Kasparov A-B cycles (E0, F0) and (E1, F1) are unitarily
equivalent if there is a unitary map U : E0 → E1 of graded Hilbert A-B bimod-
ules such that UF0U

∗ = F1.

A homotopy between even Kasparov A-B cycles (E0, F0) and (E1, F1) is given by an
even A-B ⊗C([0, 1]) cycle (E , F ) such that (E ⊗(B⊗C([0,1]),ρi) B,F ⊗ 1) is unitarily
equivalent to (Ei, Fi) for i = 0, 1. Here ρi(b ⊗ f)b′ = f(i)bb′ for b, b′ ∈ B and
f ∈ C([0, 1]) and corresponds roughly to “evaluation at i”.

Definition 3.4. Define KK0(A,B) to be kk0(A,B)/ ∼ where ∼ denotes homotopy
equivalence. Note that in our definition homotopy equivalence includes unitary
equivalence.

Proposition 3.5. The set KK0(A,B) is an abelian group with direct sum as
operation. An additive inverse for (E , F ) is (Eop,−F ).

Proof. See [Bla98, Prop 17.3.3].

Definition 3.6. A Kasparov A-B cyle (E , F ) is called degenerate if a(F 2 − 1) =
a(F ∗ − F ) = aF − Fa = 0 for all a ∈ A.
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Lemma 3.7. Any degenerate Kasparov cycle represents 0 in the group KK0(A,B).

Proof. We include the proof of this Lemma since it contains an interesting idea,
called an “Eilenberg swindle” [HR00, Prop. 8.2.8].

Let (E , F ) be a degenerate A-B cycle. Define E∞ = ⊕∞i=1E and F∞ ((ei)i∈N) =
(Fei)i∈N. We claim that (E∞, F∞) again defines a Kasparov A-B cycle. Certainly
E∞ is still a graded A-B Hilbert C∗-module and F∞ is a bounded adjointable
operator, (F∞)∗ = F∗∞. Furthermore, a(F 2

∞ − 1) = ⊕i∈Na(F 2 − 1) = ⊕i∈N0 = 0,
and the same holds aF−Fa and a(F ∗−F ) so that (E∞, F∞) still defines a Kasparov
A-B cycle.

Now clearly (E , F )⊕(E∞, F∞) is unitarily equivalent to (E∞, F∞), so they represent
the same element in KK(A,B). Since KK(A,B) is a group with operator ⊕ by
Proposition 3.5, this implies that (E , F ) represents the additive unit.

Proposition 3.8. The construction of KK0(A,B) defines a homotopy invariant
bifunctor from pairs of C∗-algebras to abelian groups. This functor is contravariant
in the first variable and covariant in the second variable.

Proof. See [Bla98, Par. 17.8, 17.9].

A useful result by Kasparov allows us to construct KK0(A,B) using a simpler
notion of homotopy than the one from Definition 3.3.

Definition 3.9. An operator homotopy between two Kasparov cycles (E , F0) and
(E , F1) is given by a norm-continuous map [0, 1] 3 t 7→ Ft such that (E , Ft) is a
Kasparov cycle for all t and Ft=0 = F0, Ft=1 = F1.

Proposition 3.10. Two cycles (E0, F0) and (E1, F1) are homotopic in the sense
of Definition 3.3 if and only if they are homotopic in the sense of Definition 3.9
up to addition of degenerate Kasparov cycles.

Proof. See [Bla98, Par. 18.5], note that this proof uses the Kasparov product
which we define later.

The notion of operator homotopy makes it easy to state the following Corollary,
although it is also an immediate consequence of the definition of homotopy in
Definition 3.3.

Corollary 3.11. Let (E , F ) be a Kasparav A-B cycle and K : E → E a compact
operator. Then (E , F ) and (E , F +K) represent the same class in KK0(A,B).

Proof. An operator homotopy is given by [0, 1] 3 t 7→ F + tK.

There is a nice connection between KK-theory and the “ordinary” K-groups.
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Proposition 3.12. We have KK0(C, B) ∼= K0(B) and KK0(A,C) ∼= K0(A).

Proof. For the first assertion, see [Bla98, Prop. 17.5.5]. For the second assertion
we refer to [HR00, Ch. 8.4].

The motivation for the 0 in KK0(A,B) comes from the existence of higher order
KK groups, similar to the existence of higher order K groups. We even have a
notion similar to Bott periodicity.

Definition 3.13. We define the higher order KK-groups by

KKn(A,B) = KK(A,B ⊗ Cln),

KK−n(A,B) = KK(A⊗ Cln, B)

for n ∈ N.

Proposition 3.14. We have KKl(A,B) ∼= KKl+2(A,B) for all l ∈ Z.

Proof. See [Ech17, Proposition 3.23].

Proposition 3.14 tells us that we lose no information restricting to KK0(A,B)
and KK1(A,B) or KK−1(A,B). Elements of KK±1(A,B) are, in principle, rep-
resented by even A-B ⊗ Cl1 or A ⊗ Cl1-B cycles, however we may also represent
them using odd cycles, although we defer the proof of this claim until we treat the
unbounded version.

Definition 3.15. An odd Kasparov A-B cycle is a pair (E , F ) where E is a A-B
Hilbert bimodule and F : E → E a bounded adjointable map such that a(F 2 − 1),
aF − Fa and a(F ∗ − F ) are compact.

Remark 3.16. The only difference with Definition 3.1 is that E is ungraded and
F therefore not required to be odd.

3.2 The Kasparov Product

One of the main tools that Kasparov’s KK-groups provide is the Kasparov prod-
uct, which is a map KK0(A,B) ×KK0(B,C) → KK0(A,C). A downside of the
Kasparov product is that an explicit formula for the product of two cycles is hard
to give in general, therefore we only give a criterion for an A-C cycle (E , F ) to
represent the product of an A-B cycle (E1, F1) and a B-C cycle (E2, F2). In order
to introduce this we will follow [Con94, Ch. 4, Appendix 1] but refer to [Bla98]
for proofs.

Definition 3.17. Let E1 be an Hilbert B-module and E2 a Hilbert B-C bimodule
and E = E1 ⊗B E2. Define for ξ ∈ E1 the map Tξ : E2 → E, Tξ(η) = ξ ⊗ η for all
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η ∈ E2. The adjoint T ∗ξ is given by T ∗ξ (ν ⊗ η) = 〈ξ, ν〉B · η on elementary tensors
ν ⊗ η ∈ E.

Definition 3.18. Let E1 be a Hilbert B-module, and (E2, F2) a Kasparov B-C
module. Set E = E1 ⊗B E2 then F : E → E is an F2-connection on E1 if[(

0 T ∗ξ
Tξ 0

)
,

(
F2 0
0 F

)]
is compact on E2 ⊕ E for all ξ ∈ E1.

Definition 3.19. Suppose (E1, F1) and (E2, F2) are even Kasparov A-B, B-C cy-
cles respectively. Let E = E1 ⊗B E2 and let F : E → E. Then we say that (E , F )
represents the Kasparov product of (E1, F1) and (E2, F2) if

• (E , F ) is an even Kasparov A-C cycle,

• F is an F2 connection, (connection condition)

• For all a ∈ A there is a compact K : E → E such that a[F1⊗1, F ]a∗+K ≥ 0.
(positivity condition)

We write (E , F ) ∈ (E1, F1)#(E2, F2).

In order to show that this definition for the Kasparov product makes sense, we
include the following two propositions.

Proposition 3.20. Let (E1, F1) and (E2, F2) be Kasparov A-B, B-C cycles respec-
tively. There exists a Kasparov product (E , F ), and any two products represent the
same class in KK0(A,C).

Proof. See [Bla98, Thm. 18.4.3]. This is a consequence of Kasparov’s Technical
Theorem.

Proposition 3.21. The Kasparov product defines a bilinear product KK0(A,B)×
KK0(B,C)→ KK0(A,C). In particular, KK0(A,A) is a ring.

Proof. See [Bla98, Thm. 18.4.4]. To see that KK0(A,A) forms a ring only asso-
ciativity of the product and existence of a unit are missing Associativity is proven
in [Bla98, Thm. 18.6.1], a representative for the multiplicative unit is (A, 0) with
trivial grading [Ech17, Thm. 3.12].

Remark 3.22. In general we have a Kasparov product KKi(A,B)×KKj(B,C)→
KKi+j(A,C) whose construction follows completely from the KK0 case.
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3.3 The Index Pairing: KK0(C,C) = Z
One of the aspects of ordinary K (co)homology that appears nicely in KK theory
is the index pairing between K0(A) and K0(A). This index pairing is a bilinear
map K0(A)×K0(A)→ Z. Using the Kasparov product and Proposition 3.12 this
takes the form KK0(C, A) × KK0(A,C) → KK0(C,C). In this section we will
show that KK0(C,C) = Z, not just as group but as ring.

Before we start let us note two useful simplification results.

Proposition 3.23. Any class in KK0(A,B) can be represented by a cycle (E , F )
where F is exactly self-adjoint.

Proof. See [Bla98, Prop. 17.4.2] for all details, but the central idea is that (E , 1
2
(F+

F ∗)) is also a Kasparov A-B cycle.

Proposition 3.24. Suppose A is unital. Any class in KK0(A,B) can be repre-
sented by cycle (E , F ) where the representation of A on E is unital.

Proof. See [Bla98, Par. 17.5] for all details, but the central idea is to replace (E , F )
by (1 · E , 1F1).

Let us first investigate the definition of Kasparov cycles for A = B = C. Going
by the bullets of Definition 3.1 we get, also assuming the simplifications from
Propositions 3.23 and 3.24,

• E is a graded Hilbert space,

• F is a bounded, self-adjoint, linear operator of degree 1,

• F 2 − 1 is compact.

Since we are, apparently, dealing with Hilbert spaces rather than modules we
will usually denote Kasparov C-C cycles by (H,F ). Note that the third point
implies that F is a Fredholm operator. Furthermore, we may split our Hilbert
space H = H0 ⊕ H1 into the even and odd component. With respect to this
decomposition we have

F =

(
0 F−
F+ 0

)
where F− = F ∗+ since F is self-adjoint. Furthermore

F 2 − 1 =

(
F ∗+F+ − 1 0

0 F+F
∗
+ − 1

)
which means that also F+ is Fredholm, with parametrix F ∗+.
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Definition 3.25. Let (H,F ) be a Kasparov C-C cycle. Then as above, F =(
0 F−
F+ 0

)
. Define the index of (H,F ) as Index((H,F )) = Index(F+), i.e. the

Fredholm index of F+.

Proposition 3.26. The map Index : KK0(C,C) → Z is a well-defined group
homomorphism.

Proof. Let us start with well-definedness of this map. Suppose (H,F ) and (H ′, F ′)
represent the same class in KK0(C,C), by Proposition 3.10 we may assume that
(H,F ) and (H ′, F ′) are operator homotopic up to addition of degenerate cycles.
Therefore it is sufficient to show that

1. unitary equivalence,

2. operator homotopies,

3. addition of degenerate cycles,

preserve the index.

Since unitary equivalences between (H,F ) and (H ′, F ′) preserve the grading on H
and H ′ these unitaries actually intertwine F+, F ′+ and F−, F ′−. So we get a unitary
U+ such that F+ = U+F

′
+U
∗
+. But then ker(F+) = U+ ker(F ′+)U∗+ and similar for

ker(F ∗+) so that the Fredholm indices of F+ and F ′+ coincide.

Now let [0, 1] 3 t 7→ Ft be an operator homotopy. Then we also get a norm-
continuous map [0, 1] 3 t 7→ (Ft)+. The map S 7→ Index(S) from Fredholm oper-
ators to Z is continuous (2.4), so the map [0, 1] 3 t 7→ Index((Ft)+) is continuous,
hence constant.

To prove invariance under addition of degenerate cycles we first argue that de-
generate cycles have index 0, and then that the index is additive. Suppose that
(H,F ) is a degenerate KK0(C,C) cycle, i.e. F 2 − 1 = 0. Then F ∗+F+ = 1 as well,
so that F+ is invertible. But then Index((H,F )) = Index(F+) = 0 since invertible
operators have index 0.

Finally we turn to additivity. Let (H,F ) and (H ′, F ′) both be Kasparov C-C
cycles, then (H,F ) + (H ′, F ′) = (H ⊕ H ′, F ⊕ F ′). Decomposing H ⊕ H ′ =
H0 ⊕H ′0 ⊕H1 ⊕H ′1 yields

F ⊕ F ′ =


0 0 F− 0
0 0 0 F ′−
F+ 0 0 0
0 F ′+ 0 0

 .

So (F ⊕ F ′)+ = F+ ⊕ F ′+ and Index(F+ ⊕ F ′+) = Index(F+) + Index(F ′+).
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Our next step is to show that the index map is actually an isomorphism. For this
we need of course surjectivity and injectivity, of these injecitivity is the hard part
so we start with that.

Proposition 3.27. Let (H,F ) be a Kasparov C-C cycle with Index((H,F )) = 0,
then (H,F ) represents 0.

Proof. Our strategy will be to make a series of compact perturbations of (H,F )
which lead to a degenerate cycle. Then Corollary 3.11 implies that (H,F ) repre-
sents 0. Assume F is self-adjoint in accordance to Proposition 3.23.

By assumption Index(F+) = 0, then there is a compact operator K such that

F+ + K is invertible ([Mur14, Rem. 1.4.3]). Define F1 =
(

0 (F++K)∗

F++K 0

)
and

F2 = F1(F ∗1F1)−
1
2 .

Let us consider (F ∗1F1)−
1
2 for a moment. Expanding the F1 yields

F ∗1F1 = F ∗F + F ∗K +K∗F +K∗K.

The right hand side of this equation is a compact perturbation of 1, since F ∗F −
1 = F 2 − 1 is compact. But then (F ∗1F1)−

1
2 is also 1 + K ′ for some compact

operator K ′. This can be seen by considering π : B(H) → B(H)/K(H) which is
a homomorphism, hence if π(F ∗1F1) = π(1) the same holds for their square roots.

Therefore F2 is a compact perturbation of F1, and hence also of F . The class
represented by (H,F2) is degenerate, since F 2

2 = 1 and F2 is self-adjoint. But
since (H,F2) and (H,F ) represent the same class in KK(C,C) we find that (H,F )
represents 0.

Proposition 3.28. The map Index : KK0(C,C)→ Z is a group isomorphism.

Proof. We have that Index is a homomorphism by Proposition 3.26 and we have
injectivity by Proposition 3.27.

For surjectivity, consider H = `2(N)⊕ `2(N) with grading ( 1 0
0 −1 ) and operator F+

the right shift, i.e. F+ψ(0) = 0, F+ψ(n + 1) = ψ(n). Then F =
(

0 F ∗+
F+ 0

)
makes

(H,F ) into a Kasparov C-C cycle with Index((H,F )) = 1. Since the generator of
Z lies in the range of Index, the Index is surjective.

To extend from a group isomorphism to an isomorphism of rings is surprisingly
easy.

Lemma 3.29. The data (C, 0) with C trivially graded defines a multiplicative unit
for KK0(C,C).
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Proof. Note that, somewhat counter-intuitively, (C, 0) is not degenerate since 02−
1 6= 0. It is very easy to show that all conditions in Definition 3.19 are satisfied
for E = E1 and F = F1 in the case (E1, F1) ⊗C (C, 0) and E = E2, F = F2 in the
case (C, 0)⊗C (E2, F2).

We will also compute Index((C, 0)). Note that 0+ = 0 : C → {0}, so that
Index(0+) = ker(0)− coker(0) = 1.

Corollary 3.30. KK0(C,C) ∼= Z as rings.

Proof. Let 1 be the multiplicative unit in KK0(C,C), then Index(1) = 1 by
Proposition 3.26 and the above Lemma. Hence any class in x ∈ KK0(C,C) can
be represented by a direct sum of Index(x) copies of 1, then distributivity of the
Kasparov product shows that Index is also multiplicative.

23



4 Unbounded KK theory

Now that we have a basic idea what bounded KK-theory is, it is time to turn to
unbounded KK-theory. The unbounded approach to KK-theory was introduced
by Baaj en Julg [BJ83] and is the main approach we use in this thesis. It turns
out to lend itself well to the computation of Kasparov products, as we will see in
Sections 4.2 and 4.3.

4.1 Definitions

Let us first define the unbounded representatives of KK-classes.

Definition 4.1. Let A and B be (possibly graded) C∗-algebras. We say that
(AEB, D : dom(D) ⊂ E → E) is an even unbounded Kasparov A-B cycle if

• AEB is a graded Hilbert bimodule and T is odd,

• D is self-adjoint and regular,

• a(1 +D2)−1 ∈ K(E) for all a ∈ A,

• For all elements a of a dense subset A ⊂ A the graded commutator [D, a] is
defined on dom(D) and extends to a bounded operator on E.

We write Ψ0(A,B) for the set of all even unbounded Kasparov A-B cycles.

The “raison d’être” for this definition is the following theorem, due to Baaj and
Julg [BJ83].

Theorem 4.2. Let (AEB, D) ∈ Ψ0(A,B) be an unbounded Kasparov cycle. Then
(AEB, b(D)) is a bounded Kasparov cycle, where b(D) denotes the bounded trans-
form from Definition 2.30. Moreover, the map Ψ0(A,B)→ KK(A,B), (E , D) 7→
[(E , b(D))] is surjective.

Proof. This was first shown in [BJ83], the original paper by Baaj and Julg, but it
does not contain a full proof. All details can be found in [Bla98, Thm. 17.11.3,
17.11.4].

Unbounded KK-theory is very interesting from the standpoint of noncommutative
geometry, since unbounded Kasparov cycles are almost spectral triples. Indeed,
suppose A is unital and trivially graded and B = C. Then the requirements for
an unbounded Kasparov cycle become

• AEC is a graded Hilbert space with an even representation of A and an odd
operator D,
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• D is self-adjoint (regularity is automatic for Hilbert spaces),

• D has compact resolvent,

• for a ∈ A the commutator [D, a] is bounded.

Hence (A, E , D) is a spectral triple.

In Definition 3.15 we saw the definition of odd bounded Kasparov cycles. Similarly
we have odd unbounded Kasparov cycles.

Definition 4.3. Let A and B be trivially graded C∗-algebras. We say that (AEB, D)
is an odd unbounded Kasparov A-B cycle if AEB is a trivially graded Hilbert bi-
module and the pair satisfies all conditions in Definition 4.1 except that D is odd.

Denote the set of all odd unbounded Kasparov A-B cycles by Ψ1(A,B).

Since the bounded transform is surjective Ψ0(A,B)→ KK0(A,B) it is also surjec-
tive Ψ0(A⊗Cl1, B)→ KK1(A,B). We now show, using work from [Dun16], that
elements of Ψ0(A ⊗ Cl1, B) can equivalently be described using odd unbounded
Kasparov cycles.

Lemma 4.4. Let (E , D) be an odd unbounded Kasparov A-B cycle. Then (E ⊗
C2, D ⊗ γ1) is an even unbounded Kasparov A ⊗ Cl1-B cycle with grading 1 ⊗ γ3

and a⊗ (α1+βe) acting via αa⊗1+βa⊗γ2, where e denotes the generator of Cl1
and the γ matrices are the Pauli matrices. We call this “doubling” an odd cycle.

Proof. It is clear that D ⊗ γ1 is odd relative to 1 ⊗ γ3, self-adjointness, regular-
ity, compact resolvent and bounded commutators all follow immediately from the
corresponding statements for D.

Lemma 4.5. Let (Ẽ , D̃) be an even unbounded Kasparov A ⊗ Cl1-B cycle. Then
there exists an odd unbounded Kasparov A-B cycle (E , D) such that the A⊗Cl1-B
cycle (E ⊗ C2, D ⊗ γ1) from Lemma 4.4 represents the same class as (Ẽ , D̃). We
call this “halving” an even cycle.

Proof. The difficulty in this “halving” procedure is that D̃ might not anti-commute
with the action of Cl1 as in the case of a doubled odd cycle. In [Dun16, Thm. 5.1]
Dungen shows that D̃ can be modified such that it does, without changing the
represented KK-class.

It then follows, using the action of Cl1, that Ẽ0
∼= Ẽ1 so assume w.l.o.g. that they

are in fact the same space. Take E = Ẽ0 and D to be D̃|E .

Combining Lemmas 4.4 and 4.5 we have a method to move between even A⊗Cl1-B
cycles and odd A-B cycles that is a bijection at the level of KK-classes. Hence
we may describe unbounded representatives of KK1(A,B) by odd cycles.
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Recall that KK1(A,B) can also be defined as KK0(A,B ⊗Cl1). There are “dou-
bling” and “halving” notions related to this picture as well, as in [KS16]. This
process of “right-doubling” is analytically actually easier than our “left-doubling”
because D̃ is automatically Cl1 linear, however the left-doubling turns out to be
much more suitable for our later applications.

4.2 Unbounded Product: Kucerovsky

Similar to Definition 3.19 we have a criterion to decide if a certain unbounded
cycle is an unbounded representative for the product of two other unbounded
cycles. This result is due to Kucerovsky [Kuc96].

There is one concept in that theorem that we have not introduced, that is the
concept of compatible resolvents.

Definition 4.6. Let D and D1 be unbounded operators on a Hilbert bimodule E.
Then resolvent of D is compatible with D1 if there is a dense submodule W ⊂ E
such that (D + iλ)−1(D1 + iλ1)−1 maps W into dom(D1) for all λ, λ1 ∈ R \ {0}.
The submodule W is called the domain of compatibility.

Remark 4.7. See [Kuc96, Lemma 10] for several sufficient conditions for com-
patibility.

Theorem 4.8. Let (E1, D1) ∈ Ψ0(A,B), (E2, D2) ∈ Ψ0(B,C). Suppose that (E1⊗B
E2, D) ∈ Ψ0(A,C), and furthermore

• for all ξ in a dense subset of A · E1 the (graded) commutator[(
D 0
0 D2

)
,

(
0 Tξ
T ∗ξ 0

)]
is bounded on dom(D)⊕ dom(D2) ⊂ (E1⊗B E2)⊕E2, (connection condition)

• the resolvent of D is compatible with D1 ⊗ 1 or vice versa,

• 〈D1 ⊗ 1ψ,Dψ〉 + 〈Dψ,D1 ⊗ 1ψ〉 ≥ c〈ψ, ψ〉 for some c ∈ R and ψ in the
domain of compatibility. (positivity condition)

Then (E1 ⊗B E2, D) represents the Kasparov product of (E1, D1) and (E2, D2).

Here ξ is homogeneous and Tξ is defined as in Definition 3.17.

Proof. See [Kuc96, Thm. 13].

Remark 4.9. We have labelled the first and third conditions with the same names
appearing in the definition of the bounded Kasparov product, Definition 3.19, since
these properties correspond essentially one-to-one with those.
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4.3 Unbounded Connections

In this section we will provide a cursory introduction of connections. To introduce
them properly we would need to include a significant stack of definitions related
to finding the “differentiable” elements of C∗-algebras and Hilbert bimodules. We
want to avoid this, so we will give simplified definitions and refer to [KL12], [KL13],
[Mes14] and [BMS16] for details.

Definition 4.10. Let (E , D) be an unbounded Kasparov A-B cycle. Define ΩD(A)
to be the A-A bimodule generated by elements of the form [D, a], a ∈ A.

Definition 4.11. Let (E1, D1) be an unbounded Kasparov A-B cycle and (E2, D2)
an unbounded Kasparov B-C cycle. We say that ∇ is a connection from (E1, D1) to
(E2, D2) if ∇ is a map from some dense subset E ⊂ E1 to E1⊗B ΩD2(B), satisfying

∇(ψ · b) = ∇(ψ) · b+ ψ ⊗ [D2, b].

The connection ∇ is called metric if

〈∇(ψ), φ〉E1 + 〈ψ,∇(φ)〉E1 = [D2, 〈ψ, φ〉E1 ].

Note that for this to make sense we need 〈E,E〉E1 ⊂ B and 〈ψ, φ⊗ω〉E1 := 〈ψ, φ〉E1 ·
ω ∈ ΩD2(B).

These connections are intended to compute Kasparov products. The Leibniz-rule
we saw in Definition 4.11 allows us to define an operator associated to 1⊗D2 on
E1 ⊗B E2, which is not immediately possible since D2 does not commute with the
B-action.

Definition 4.12. Let (E1, D1), (E2, D2) and ∇ as in Definition 4.11. Define

dom(γ ⊗∇ D2) := E⊗alg dom(D2)

and

γ ⊗∇ D2 : dom(γ ⊗∇ D2)→ E1 ⊗B E2,

ψ ⊗ φ 7→ γ(ψ)⊗D2φ+∇(γ(ψ)) · φ,

where γ is the grading of E1 and ξ ⊗ [D2, b] ∈ E1 ⊗ ΩD2(B) acts on E2 by

(ξ ⊗ [D2, b]) · φ = ξ ⊗ [D2, b]φ.

Theorem 4.13. Let (E1, D1) and (E2, D2) be unbounded Kasparov A-B, B-C cy-
cles respectively, and ∇ a connection from (E1, D1) to (E2, D2). Then (E1 ⊗B
E2, D1 ⊗ 1 + γ ⊗∇ D2) represents the product of (E1, D1) and (E2, D2) if [γ ⊗∇
D2, D1 ⊗ 1](D1 ⊗ 1 + iλ)−1 is bounded and [γ ⊗∇ D2, a] is bounded for a ∈ A.
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Remark 4.14. For the precise statement and proof of this theorem see [KL13].

The proof of Theorem 4.13 starts by showing that D1 ⊗ 1 + γ ⊗∇ D2 is indeed
self-adjoint and has compact resolvent, which is where the relative bound on the
commutator plays an essential role. Then the conditions of Kucerovsky (Theorem
4.8) are checked, one of which we will show here as well.

Lemma 4.15. Let ∇ be a metric connection from (E1, D1) to (E2, D2), then the
connection condition in Theorem 4.8 is satisfied by D1 ⊗ 1 + γ ⊗∇ D2.

Proof. This proof is essentially just a computation. We want to show that[(
D1 ⊗ 1 + 1⊗∇ D2 0

0 D2

)
,

(
0 Tξ
T ∗ξ 0

)]
=

(
0 (D1 ⊗ 1 + 1⊗∇ D2)Tξ − (−1)∂ξTξD2

D2T
∗
ξ − (−1)∂ξT ∗ξ (D1 ⊗ 1 + 1⊗∇ D2) 0

)
is bounded for ξ in a dense subset of E1. We will do this for the two components
separately.

Let φ ∈ E2, then

(D1 ⊗ 1 + 1⊗∇ D2)Tξφ− (−1)∂ξTξD2φ =D1ξ ⊗ φ+ (−1)∂ξξ ⊗D2φ

+ (−1)∂ξ∇(ξ) · φ− (−1)∂ξξ ⊗D2φ,

=D1ξ ⊗ φ+ (−1)∂ξ∇(ξ) · φ.

While the map ξ 7→ ∇(ξ), with ∇(ξ) interpreted as operator E2 → E1 ⊗B E2 may
be unbounded, the map ∇(ξ) : E2 → E1 ⊗B E2 is bounded. Hence this component
of the commutator is a bounded map for ξ ∈ dom(D1 ⊗ 1 + γ ⊗∇ D2).

Let ψ ⊗ φ ∈ E1 ⊗B E2, then

(D2T
∗
ξ − (−1)∂ξT ∗ξ (D1 ⊗ 1 + 1⊗∇ D2))(ψ ⊗ φ)

= D2(〈ξ, ψ〉E1φ)− (−1)∂ξ〈ξ,D1ψ〉E1φ− 〈ξ, ψ〉E1D2φ− 〈ξ,∇(ψ)〉E1 · φ,
= [D2, 〈ξ, ψ〉E1 ]φ− (−1)∂ξ〈D1ξ, ψ〉E1φ− 〈∇(ξ), ψ〉E1 · φ− [D2, 〈∇(ξ), ψ〉E1 ]φ,
= −(−1)∂ξ〈D1ξ, ψ〉E1φ− 〈∇(ξ), ψ〉E1 · φ.

Again, this is a bounded map E1 ⊗B E2 → E2 since all unbounded operators have
been moved to ξ, which is fixed.

4.4 The Canonical Spectral Triple of a Manifold

In this section we construct a specific KK-class associated to a manifold M , called
the canonical spectral triple. As we mentioned in Section 4.1, spectral triples are
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examples of unbounded C(M)-C cycles so this associates a KKi(C(M),C) class
to a manifold. In order to construct this triple we need to define a series of
structures on our manifold M . We will cherry-pick the essential definitions in
order to streamline the discussion, a full introduction can be found in [Sui15] and
[BM89].

Definition 4.16. Let V be a (finite dimensional) vector space over F and Q :
V → F a quadratic form. Define the Clifford algebra Cl(V,Q) to be the unital
C-algebra generated by V subject to the relation

v2 = Q(v)1.

Define a grading on Cl(V,Q) by setting γ(v1 · ... · vk) = (−1)kv1 · ... · vk.

Definition 4.17. Let M be a Riemannian manifold and TM the tangent bundle
of M . Let {xµ} be local coordinates over U ⊂ M . Define the Clifford bundle
Cl(TM) locally as the unital algebra bundle generated by {∂µ} with

∂µ∂ν + ∂ν∂µ = 2gµν .

The transition functions are inherited from the tangent bundle. If dim(M) = n is
even, define the Chirality operator γ = (−i)n2 ∂1∂2 · ... · ∂n.

Notation 4.18. We will usually refer to (local) sections of the Clifford bundle in
terms of γµ = ∂µ.

Let us justify the name “Clifford bundle”.

Lemma 4.19. Let M be a Riemannian manifold with n = dim(M), then over any
point x ∈M we have Cl(TM)x ∼= Cl(Cn, v 7→ gx(v, v)).

Proof. We only need to prove that the imposed relations imply each other. Suppose
γµγν + γνγµ = 2gµν , then for v = vµγµ,

v2 = vµvνγµγν .

Our relation allows us to replace the terms γµγν and γνγµ together by 2gµν , and
γνγν = gνν . Using that gµν = gνµ we get v2 = vµvνgµν = gx(v, v).

For the converse, consider

(γµ + γν)
2 = 〈γµ + γν , γµ + γν〉,

γ2
µ + γµγν + γνγµ + γ2

ν = 〈γµ, γµ〉+ 〈γµ, γν〉+ 〈γν , γµ〉+ 〈γν , γν〉,
γµγν + γνγµ = gµν + gνµ.

Using symmetry of g then completes the argument.
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Definition 4.20. Let M be a Riemannian manifold. We say that M is spinc if
there is a vector bundle S such that Cl(TM) ∼= End(S) if dim(M) is even and
Cl(TM)0 ∼= End(S) if dim(M) is odd. We call S a spinor bundle and the pair
(M,S) a spinc structure.

The associated action of Cl(TM) on S is called Clifford action or Clifford multi-
plication and is denoted c(∂µ)ψ for ψ ∈ S. There is also an associated action of
one-forms on the spinor bundle using the Riemannian metric, dxµ acts on S via
the vector vν = gµνdx

µ, we denote this action c(dxµ)ψ as well.

If dim(M) is even, the Chirality operator defines a grading on S.

Let 〈·, ·〉S be a continuous inner product on S and define L2(S) to be the completion
of the compactly supported, continuous bundle maps Cc(M,S) in this inner product.

In order to define the Dirac operator we want to define a connection on the Spinor
bundle, which we do by lifting the Levi-Civita connection. We will only do this
using local coordinates, although the construction can be done more generally.

Definition 4.21. Let M be a spinc Riemannian manifold with spinor bundle S.
Let Γ̃bµa be the Christoffel symbols for the Levi-Civita connection over U ⊂ M
relative to an orthonormal frame {Ea}. Since S is locally U × Ck and {Ea} is a
orthonormal frame we can find k × k matrices {γa} satisfying

γaγb + γbγa = 2δab

such that the Clifford action of Ea is given by γa.

The spin connection ∇S is given in local coordinates by

∇S∂µψ =

(
∂µ −

1

4
Γ̃bµaγ

aγb

)
ψ.

Here γa = γa, the index is raised to use the Einstein summation convention.

Definition 4.22. Let M be a spinc Riemannian manifold. Using the same nota-
tion as in Definition 4.21 we define the Dirac operator locally by

DMψ = ic(dxµ)∇S∂µ(ψ) = ic(dxµ)

(
∂µ −

1

4
Γ̃bµaγ

aγb

)
ψ.

Theorem 4.23. Let M be a complete spinc Riemannian manifold, then DM is
essentially self-adjoint on C∞0 (M,S) and has compact resolvent.

Proof. See [GVF01, Thm. 9.15].
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Definition 4.24. Let M be a spinc Riemannian manifold. Then the data

(C∞(M), L2(S), DM)

forms the canonical spectral triple of M .

For the purposes of this thesis we define the fundamental KK-class of a manifold
to be the class represented by the canonical spectral triple of that manifold.

Definition 4.25. Let M be a spinc manifold, the fundamental class of M is the
class represented by (L2(SM), DM) ∈ KKdim(M)(C(M),C), where SM is the spinor
bundle and DM is the Dirac operator. If dim(M) is even, the grading on L2(SM)
is given by the chirality operator. We denote the fundamental class by [M ].

For canonical spectral triples, connections are more familiar.

Lemma 4.26. Let (E , D) be an unbounded Kasparov A-C(M) cycle. A metric
connection from (E , D) to [M ] may equivalently be given by a map ∇ : E →
E ⊗C(M) ΩdR(M), satisfying

〈∇(ψ), φ〉E + 〈ψ,∇(φ)〉E = d〈ψ, φ〉E

where E ⊂ E dense and ΩdR(M) denotes the de-Rham cohomology of M .

Proof. Both ΩdR(M) and ΩDM (C(M)) are obtained by applying a differential to
C∞0 (M), in the case of ΩdR(M) this is the de-Rham differential, in the case of
ΩDM (M) this is f → [DM , f ].

[DM , f ] = ic(dxµ)∇S∂µf − fic(dx
µ)∇S∂µ ,

= ic(dxµ)

(
∂µ −

1

4
Γ̃bµaγ

aγb

)
f − fic(dxµ)

(
∂µ −

1

4
Γ̃bµaγ

aγb

)
,

= ic(dxµ)∂µf − fic(dxµ)∂µ,

= i(∂µf)c(dxµ).

Here we use that f commutes with the Clifford multiplication so that we only find
the derivative terms. Note that df = (∂µf)⊗ dxµ, so there is a clear isomorphism
between ΩdR(M) and ΩDM (C(M)) sending df → i(∂µf)c(dxµ) = [DM , f ].

This allows us to formulate connections between (E , D) and [M ] as a map ∇ :
E → E ⊗C(M) ΩdR(M), we must however note that (ψ ⊗ dxµ) · φ = ψ ⊗ ic(dxµ)φ.

Since d〈ψ, φ〉E maps to [DM , 〈ψ, φ〉E ] it is immediate that a ΩdR(M)-valued con-
nection satisfying the equation in the statement of this Lemma produces a metric
ΩDM (C(M))-valued connection.
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Remark 4.27. The appearance of the factor i in this construction is due to the dif-
ferential nature of connections. Since we want to work with self-adjoint operators
and differentials are generally anti-self-adjoint we introduce this factor i.

The reason we introduce the fundamental class of a manifold is our goal of proving
that the shriek module provides a factorization of the fundamental classes, as
discussed in the introduction. This is actually a direct consequence of the fact that
[M ] is also the shriek class associated to the map M → {∗} and (g◦f)! = f!⊗C(Y )g!

for f : X → Y , g : Y → Z [CS84], but we will not prove this here since we want
to work solely in the unbounded framework.

Let us compute the Dirac operator in a simple example, that of R2, or rather
U = R2 \ {(0, 0)} since we will work in polar coordinates.

Let us start by showing that R2 is indeed spinc. The tangent bundle of R2 is
trivial, TR2 = R2 × R2 which gives a trivial Clifford bundle as well: Cl(TR2) =
R2 × Cl(R2, v 7→ 〈v, v〉).

The Clifford algebra Cl(R2, v 7→ 〈v, v〉) is generated by orthonormal v1 and v2.
Consider the pauli-matrices

γ1 =

(
0 1
1 0

)
, γ2 =

(
0 i
−i 0

)
, γ3 =

(
1 0
0 −1

)
.

Together with 1 they generate M2(C) and v1 7→ γ1, v2 7→ γ2 realizes the required
commutation relations of the Clifford algebra. Hence Cl(R2, v 7→ 〈v, v〉) ∼= M2(C).
This allows us to find a spinor bundle for R2 by setting S = R2 × C2.

From now on we will work in polar coordinates and over U . We will compute the
Levi-Civita connection relative to polar coordinates. Recall that the Christoffel
symbols for the Levi-Civita connection are given by

Γγαβ =
1

2
gγδ(∂αgβδ + ∂βgαδ − ∂δgαβ).

The metric is given by g = (dr)2+r2(dθ)2, so a straightforward computation shows
that

Γrθθ = −r,

Γθθr = Γθrθ =
1

r
,

while all other Christoffel symbols are zero.

Define an orthonormal frame for TR2|U = U × R2 by e1 = ∂r and e2 = 1
r
∂θ. We

now compute the Christoffel symbols relative to this orthonormal frame using the
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Leibniz-rule for connections.

∇∂r(e2) = ∇∂r

(
1

r
∂θ

)
,

=

(
∂

∂r

1

r

)
∂θ +

1

r
∇∂r(∂θ),

= − 1

r2
∂θ +

1

r

1

r
∂θ,

= 0.

Similar computations for the other symbols yield Γ̃jri = 0, Γ̃2
θ1 = 1, Γ̃1

θ2 = −1 and
Γ̃iθi = 0.

Now we can employ Definition 4.21 to find the spin connection ∇S for S = U×C2.
Choose a basis for S such that the Clifford action of e1 is given by γ1 and the
Clifford action of e2 is given by γ2. Then

∇S∂r =
∂

∂r
,

∇S∂θ =
∂

∂θ
− 1

4
(γ1γ2 − γ2γ1),

=
∂

∂θ
− 1

2
γ1γ2.

From here we can compute the Dirac operator by Definition 4.22. We get

DU = i(c(dr)∇S∂r + c(dθ)∇S∂θ),

= i

(
γ1 ∂

∂r
+

1

r
γ2

(
∂

∂θ
− 1

2
γ1γ2

))
,

= i

(
γ1 ∂

∂r
+

1

2r
γ1 +

1

r
γ2 ∂

∂θ

)
.

The canonical spectral triple for R2 is then(
C∞(R2), L2(R2,C2), DR2

)
.

The fundamental class [R2] ∈ KK0(C(R2),C) associated to R2 is represented by(
L2(R2,C2), DR2

)
,

the grading is given by γ3 = ( 1 0
0 −1 ).

In the rest of the text we will write DR2 for the expression for DU , this is an abuse
of notation but we think it is justified since we only ever use the action of DR2

away from zero.
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Figure 1: This is a graphical representation of the images of ι and ι̃. The red line is
the image of ι : S1 ↪→ R2 and the blue band is the image of ι̃ : S1 × (−ε, ε)→ R2.

5 Immersion module

Let us start by introducing some notation. Let 0 < ε < 1, we will write α = π
2ε

and f will be the function f(s) = α tan(αs) defined on (−ε, ε). Furthermore,
let ι : S1 ↪→ R2 and define ι̃ : S1 × (−ε, ε) → R2, ι̃(θ, s) = (θ, s + 1) in polar
coordinates, see also Figure 1. The notation ι̃ is inspired by [CS84] who use a
similar function on their construction of the shriek module as we will explain in
Section 5.2.

We will start our discussion of the shriek module corresponding to ι by introducing
the Hilbert C(S1)-C0(R2) bimodule E . Define E = C0(S1 × (−ε, ε)) with C0(R2)-
valued inner product

〈ψ, φ〉E(θ, r) :=

{
1
r
(ψφ) ◦ ι̃−1(θ, r), (θ, r) ∈ ι̃(S1 × (−ε, ε)),

0, (θ, r) /∈ ι̃(S1 × (−ε, ε)).

The left- and right-actions by g ∈ C(S1) and h ∈ C0(R2) are given by

(g · ψ · h)(θ, s) = g(θ)ψ(θ, s)h(ι̃(θ, s)),

using polar coordinates for R2, and we define an operator on E by

(Sψ)(θ, s) = f(s)ψ(θ, s) =
π

2ε
tan
(πs

2ε

)
ψ(θ, s).
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The goal of this Chapter is to prove that (E , S) is an unbounded Kasparov C(S1)-
C0(R2) cycle that represents the shriek class as constructed in [CS84]. However,
we will start by simply showing that E is indeed a Hilbert bimodule.

Lemma 5.1. E as defined above is a Hilbert C(S1)-C0(R2) bimodule.

Proof. The only property that is not immediate is completeness, we prove this by
showing that the norm induced by the inner product 〈·, ·〉E is equivalent to the
sup-norm. Let ψ ∈ E , then

||ψ||2E = ||〈ψ, ψ〉E ||C0(R2),

= sup
(θ,r)∈R2

1

r
|ψ(θ, r − 1)|2,

= sup
(θ,s)∈S1×(−ε,ε)

1

1 + s
|ψ(θ, s)|2,

=

(
sup

(θ,s)∈S1×(−ε,ε)

1√
1 + s

|ψ(θ, s)|

)2

.

Since 1√
1+s

is bounded between 0 < 1√
1+ε

< 1√
1−ε on (−ε, ε) we get

1√
1 + ε

||ψ||sup ≤ ||ψ||E ≤
1√

1− ε
||ψ||sup.

We will also make use of a metric connection on this Hilbert bimodule. We define

∇E : C∞0 (S1 × (−ε, ε))→ E ⊗ ΩdR(R2)

ψ 7→
(
∂ψ

∂s
− 1

2(s+ 1)
ψ

)
⊗ dr +

∂ψ

∂θ
⊗ dθ.

Lemma 5.2. The map ∇E as defined above is a metric connection on E.

Proof. The connection property is a straightforward check, so we will only show
that

〈∇E∂r(ψ), φ〉E + 〈ψ,∇E∂r(φ)〉E =
∂

∂r
(〈ψ, φ〉E).

The proof for the ∂θ direction uses the same approach and is simpler.

Since ι̃ is simply translation in the “radial” direction, we have

∂

∂r
(ψ ◦ ι̃−1) =

(
∂

∂s
ψ

)
◦ ι̃−1.
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Assume, without loss of generality, that ψ and φ are real valued elements of
C∞0 (S1 × (−ε, ε)). Then

〈∇E∂r(ψ), φ〉E + 〈ψ,∇E∂r(φ)〉E =

=
1

r
(∇E∂r(ψ)φ) ◦ ι̃−1 +

1

r
(ψ∇E∂r(φ)) ◦ ι̃−1,

=
1

r

(
∂ψ

∂s
φ− 1

2(s+ 1)
ψφ

)
◦ ι̃−1 +

1

r

(
ψ
∂φ

∂s
− ψ 1

2(s+ 1)
φ

)
◦ ι̃−1,

=
1

r

(
∂ψ

∂s
φ+ ψ

∂φ

∂s

)
◦ ι̃−1 − 1

r2
(ψφ) ◦ ι̃−1,

=
1

r

∂

∂r

(
ψφ ◦ ι̃−1

)
− ∂

∂r

(
1

r

)
(ψφ) ◦ ι̃−1,

=
∂

∂r
〈ψ, φ〉E .

By Lemma 4.26, ∇E is a metric connection relative to DR2 .

5.1 Analytical Properties

Remark 5.3. In this section we do not use the explicit function α tan (αs), so these
results hold in greater generality. Specifically, any real-valued continuous function
tending to infinity at ±ε would work with the same proofs. The motivation for the
specific form of f(s) is given in Chapter 6. See also Figure 2.

We now turn to the analytical properties of S that are required to make (E , S)
into a Kasparov cycle.

Lemma 5.4. Define dom(S) = {ψ ∈ E | [(θ, s) 7→ f(s)ψ(θ, s)] ∈ E}. Then S :
dom(S)→ E is self-adjoint.

Proof. Suppose φ ∈ dom(S∗), i.e. the functional

η 7→ 〈Sη, φ〉E

is bounded for all η ∈ dom(S), and let ξ = S∗φ ∈ E .

Then ξ(θ, s) = f(s)φ(s, θ) since for all ψ ∈ Cc(S1×(−ε, ε)) we have ψ(θ, s)ξ(θ, s) =
f(s)ψ(θ, s)φ(θ, s). Therefore Sφ = ξ ∈ E so that φ ∈ dom(S). Since S is clearly
symmetric this proves self-adjointness.

Lemma 5.5. The operator S : dom(S)→ E defined as in Lemma 5.4 is regular.

Proof. We need to show that the operator (1+S2)−1 has dense range. This follows
by noting that for ψ ∈ Cc(S1 × (−ε, ε)) also (1 + S2)ψ ∈ Cc(S1 × (−ε, ε)), hence
the range of (1 + S2)−1 contains Cc(S

1 × (−ε, ε)) which is dense.
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Figure 2: The function f(s). While in Chapter 6 we use explicitly that f(s) =
π
2ε

tan(πs
2ε

), in this chapter it is only relevant that f(s) tends to ±∞ at ±ε.

Lemma 5.6. The operator S : dom(S)→ E has compact resolvent.

Proof. We need to show that (S + i)−1 ∈ K(E), so that it is the limit of a linear
combination of rank one operators, as defined in Definition 2.10. Since f(s) tends
to ±∞ as s→ ±ε the function 1

f(s)+i
is in C0(S1 × (−ε, ε)).

Let gn ∈ Cc((−ε, ε)) be a sequence of compactly supported functions converging
to 1

f(s)+i
in sup-norm and χn ∈ C0((−ε, ε)) such that χn ≡ 1 on supp(gn). Then

1
f(s)+i

= limn |χn〉〈gn|.

We are now ready to state the main result of this section.

Proposition 5.7. The pair (E , S) is an unbounded KK1(C(S1), C0(R2)) cycle.
We call (E , S) the shriek cycle.

Proof. We have already established that E is an appropriate bimodule at the start
of this Chapter. In Lemma’s 5.4, 5.5 and 5.6 we have proven the required analytical
properties of S. Therefore (E , S) is an odd unbounded Kasparov C(S1)-C0(R2)
cycle.

5.2 Homotopy of bounded transform to shriek class

To conclude this section we motivate the name “shriek cycle” for (E , S) by showing
that (E , b(S)) is homotopic to the shriek cycle as constructed in [CS84].
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Let us first consider the construction before [CS84, Prop. 2.8] for S1 ↪→ R2.
We choose a map ι̃CS : S1 × R → R2 which is a diffeomorphism onto a tubular
neighbourhood of ι(S1) ⊂ R2. Then define a C0(R2)-valued sesquilinear form
〈·, ·〉CS on Cc(S

1 × R) by setting

〈ψ, φ〉CS(x) = ψ(ι̃−1
CS(x))φ(ι̃−1

CS(x))

for x in the tubular neighbourhood, and 〈ψ, φ〉CS = 0 elsewhere. Equip Cc(S
1×R)

with a left C(S1) action and a right C0(R2) action by

(g · ψ · h)(θ, s) = g(θ)ψ(θ, s)h(ι̃CS(θ, s)).

This turns Cc(S
1×R) into a pre-Hilbert bimodule, denote by ECS the corresponding

Hilbert C(S1)-C0(R2)-bimodule. Let M : [0,∞) → [0, 1] be such that M(0) = 1
and M has compact support. On ECS define an operator F : ECS → ECS by

(Fψ)(θ, s) =
√

1−M(|s|) s
|s|
ψ(θ, s).

In [CS84] there is a Clifford action in this formula, but the Clifford structure in
this case is just multiplication by the vector-coordinate.

Choose

M(s) =

{ 1
1+f(s)2

, s ∈ [0, ε)

0, s ≥ ε
,

then

(Fψ)(θ, s) =


−ψ(θ, s), s ≤ −ε

f(s)√
1+f(s)2

ψ(θ, s), s ∈ (−ε, ε)
ψ(θ, s). s ≥ ε

This already bears close resemblance to (E , b(S)). The major difference is that E
uses (−ε, ε) as fibre with a operator tending to 1 at the edge, while ECS uses R as
fibre.

We will now define a homotopy between (ECS, F ) and (E , b(S)). Choose ι̃CS such
that ι̃CS|S1×(−ε,ε) ≡ ι̃.

Let R : [0, 1)→ R be any increasing function such that R(0) = ε and R(x)→∞
as x → 1. Define X ⊂ S1 × R × [0, 1] by (θ, s, t) ∈ X if t = 1 or |s| < R(t) for
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t < 1. Set F = C0(X), and define a C0(R2) ⊗ C([0, 1]) = C0(R2 × [0, 1])-valued
sesquilinear form on F by

〈·, ·〉F : C0(X)× C0(X)→ C0(R2 × [0, 1]),

〈ψ, φ〉F(θ, r, t) = ψ(ι̃−1
CS(θ, r), t)φ(ι̃−1

CS(θ, r), t).

Equip F with a left-C(S1) and right-C0(R2 × [0, 1]) action by

(f · ψ · g)(θ, s, t) = f(θ)ψ(θ, s, t)g(ι̃CS(θ, s), t).

Note that the norm on F induced by this inner product is simply the sup-norm
on C0(X), so that F is indeed a Hilbert bimodule. Then L(F) = Cb(X) and
K(F) = C0(X).

Now we define an operator G on F by

(Gψ)(θ, s, t) =


−ψ(θ, s, t), s ≤ −ε

f(s)√
1+f(s)2

ψ(θ, s, t), s ∈ (−ε, ε)
ψ(θ, s, t). s ≥ ε

Note that G2 − 1 is in K(F) since it is in C0(X).

LetBi be the C0(R2×[0, 1])-C0(R2) Hilbert bimodule corresponding to Φi : C0(R2×
[0, 1])→ C0(R2), (Φif)(θ, r) = f(θ, r, i) by Example 2.15, for i = 0, 1.

Lemma 5.8. (F ⊗C0(R2×[0,1]) B1, G⊗ 1) is unitarily equivalent to (ECS, F ).

Proof. We will use the map

U : F ⊗C0(R2×[0,1]) B1 → ECS
U(ψ ⊗ g)(θ, s) = ψ(θ, s, 1)g(ι̃CS(θ, s)).

Let us first check that this is unitary, it is sufficient to check this on elementary
tensors. Write (θ, r) = ι̃CS(θ, s).

〈U(ψ ⊗ f), U(φ⊗ g)〉CS(θ, r) = U(ψ ⊗ f)(θ, s)U(φ⊗ g)(θ, s),

= ψ(θ, s, 1)f(θ, r)φ(θ, s, 1)g(θ, r),

= 〈f, 〈ψ, φ〉F · g〉C0(R2)(θ, r),

= 〈ψ ⊗ f, φ⊗ g〉C0(R2)(θ, r).

Outside of the range of ι̃CS both sides are 0, so U is a unitary. Moreover U is
surjective, since it is straightforward to show that Cc(S

1×R) lies within the image
of U .
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It remains to show that U(G ⊗ 1) = FU . This is again a computation. Let
s ∈ (−ε, ε), then

(U(G⊗ 1)(ψ ⊗ g))(θ, s) = (U(Gψ ⊗ g))(θ, s),

= (Gψ)(θ, s, 1)g(θ, r),

=
f(s)√

1 + f(s)2
ψ(θ, s, 1)g(θ, r),

= FU(ψ ⊗ g)(θ, s).

Outside (−ε, ε) this still holds by the same argument, except we take ±1 instead

of f(s)√
1+f(s)2

.

Lemma 5.9. (F ⊗C0(R2×[0,1]) B0, G⊗ 1) is unitarily equivalent to (E , b(S)).

Proof. This time we use the map

V : F ⊗C0(R2×[0,1]) B0 → E
V (ψ ⊗ g)(θ, s) =

√
s+ 1ψ(θ, s, 0)g(ι̃(θ, s)).

The proof that this is a unitary map intertwining G⊗1 and b(S) proceeds exactly
like the previous Lemma, the factor

√
s+ 1 cancels out the 1

r
appearing in 〈·, ·〉E .

Lemmas 5.8 and 5.9 show that (F , G) is a homotopy between (E , b(S)) and
(ECS, F ) which justifies the name shriek cycle for (E , S). In principle this also
proves that [S1] = (E , S)⊗C0(R2) [R2] as KK-cycles, since it holds at the bounded
level. However, we want to prove this purely in the unbounded setting.

An important motivation for using the unbounded picture already appears in the
proof of Lemma 5.9, where we see that the 1

r
factor in 〈·, ·〉E , which is supposed

to account for the mean curvature of S1 in R2, is irrelevant at the bounded level.
At the unbounded level, this factor of 1

r
influences which connections are metric,

thereby influencing the form of the product operator. Proving the factorization for
our toy model S1 ↪→ R2 at the unbounded level paves the way for more interesting
examples where curvature terms may appear in the factorization, as in [KS16].
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6 Index Class

In [Ech17] S. Echterhoff shows that the definition of KK1(A,B) using Clifford al-
gebras as in Definition 3.13 is equivalent to a definition using suspensions instead,
which is more usual in K-theory. To this end Echterhoff constructs a “Dirac ele-
ment” α ∈ KK0(C0(R)⊗Cl1,C) and a “dual Dirac element” β ∈ KK0(C, C0(R)⊗
Cl1), for which he shows α ⊗C β = 1C0(R)⊗Cl1 and β ⊗C0(R)⊗Cl1 α = 1C. The op-

erator in the Dirac element is d/dx√
1+(d/dx)2

which we recognize as b
(

d
dx

)
, while the

operator in the dual Dirac element is x√
1+x2

which we can recognize as b(x).

In this section we prove a result which is similar in spirit to Echterhoff’s dual Dirac.
We take the radial part of our unbounded operator S from the shriek module in
Section 5 and combine it with a derivative in such a way that we find the unit in
KK0(C,C).

Proposition 6.1. The triple(
L2((−ε, ε),C2), T =

(
0 i∂s − if(s)

i∂s + if(s) 0

)
;

(
1 0
0 −1

))
s

with f(s) = α tan (αs) is an unbounded cycle in KK0(C,C) that represents the
unit in KK0(C,C). The set C∞c ((−ε, ε),C2) is a core for T . We write 1 for the
class in KK0(C,C) represented by this triple.

Proof. The left- and right actions of C on L2((−ε, ε),C2) are simply scalar mul-
tiplication and the C-valued inner product on L2((−ε, ε),C2) is the standard L2

inner product. This makes L2((−ε, ε),C2) a Hilbert C-C bimodule.

In Proposition 6.2 we will show that the operator T0 defined on C∞c ((−ε, ε),C2)
by the same matrix as T is essentially self-adjoint, so that T = T0 is self-adjoint.
Then in Proposition 6.11 we will show that T has compact resolvent. Therefore
our data defines a KK0(C,C) cycle.

Finally in Proposition 6.16 we show that Index(b(T )) = 1 so that the cycle indeed
represent the unit in KK0(C,C).

6.1 Self-adjointness

Proposition 6.2. The operator T0 : C∞c ((−ε, ε),C2)→ L2((−ε, ε),C2) given by

T0 =

(
0 i∂s − if(s)

i∂s + if(s) 0

)
is essentially self-adjoint.
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Before proving this we give an example of the method of proof we are after, which
is taken from [Lax02, Ch. 33].

Example 6.3. Consider the operator d = i d
dx

: C∞c (R) → L2(R). We will show
that d is essentially self-adjoint by showing that the range of d ± i is dense in
L2(R), and then invoking Theorem 2.32.

Suppose g = (d+ λi)u for u ∈ C∞c (R), i.e. u satisfies the differential equation

g = iu′ + λiu.

We want to find a pair of integrating factors for this equation, that means two
functions I, J : R→ C such that Jg = d

dx
(Iu).

Since g = (d+ λi)u we get a differential equation for I and J by

Jg =
d

dx
(Iu),

J(iu′ + λiu) = I ′u+ Iu′,

for all u ∈ C∞c (R), so iJ = I and I ′ = iλJ = λI. We choose I such that I(0) = 1,
so I(x) = eλx and consequently J(x) = −ieλx.

Then ∫
R
J(x)g(x)dx =

∫
R

d

dx
(Iu)(x)dx = 0,

since u has compact support. Hence if g ∈ ran(d+ λi) then
∫
R Jg = 0, so we have

an “orthogonality” condition for functions in the range of d+ λi. Furthermore, g
has compact support and is smooth.

We also have a converse, suppose g ∈ C∞c (R) such that
∫
R Jg = 0. Define

u(x) = I(x)−1

∫ x

−∞
J(y)g(y)dy.

Then u is smooth and has compact support since
∫
R Jg = 0. Furthermore

d

dx
(Iu)(x) =

d

dx

∫ x

−∞
J(y)g(y)dy,

I ′(x)u(x) + I(x)u′(x) = J(x)g(x),

I(x)(u′(x) + λu(x)) = −iI(x)g(x),

(d+ λi)u(x) = g(x).
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So we have established that

ran(d+ λi) =

{
g ∈ C∞c (R)

∣∣∣∣ ∫
R
J(x)g(x)dx = 0

}
where J(x) = −ie−λx.

For λ 6= 0 we have J /∈ L2(R), so we can use Lemma 6.4 to conclude that the range
of d ± i is dense. Symmetry of d follows from integration by parts, so Theorem
2.32 proves that d is essentially self-adjoint on the domain C∞c (R) ⊂ L2(R).

Lemma 6.4. Let Ω ⊂ Rd and j ∈ C(Ω,Cn), j /∈ L2(Ω,Cn). Then

Kj =

{
g ∈ C∞c (Ω)

∣∣∣∣∫
Ω

〈j(x), g(x)〉dx = 0

}
is dense.

Proof. Define a linear functional 〈j| : C∞c (Ω) → C by 〈j|f =
∫

Ω
〈j(x), f(x)〉dx.

Our first step is to prove that 〈j| is unbounded.

Suppose 〈j| is bounded on C∞c (Ω,Cn) with respect to the L2(Ω,Cn)-norm. Then
〈j| extends to a bounded linear functional on L2(Ω,Cn), given by ψ 7→ 〈j̃, ψ〉 for
some j̃ ∈ L2(Ω,Cn) by Riesz-representation.

But then
∫

Ω
〈j(x), g(x)〉dx =

∫
Ω
〈j̃(x), g(x)〉 for all g ∈ C∞c (Ω), which implies

j(x) = j̃(x). This is in contradiction with our assumption that j /∈ L2(Ω,Cn).

So 〈j| is an unbounded linear functional on C∞c (Ω,Cn). Therefore there exists
a sequence (δm)m∈N in C∞c (Ω,Cn) such that 〈j|δm = 1 and ||δm||L2 < 1

m
for all

m ∈ N.

Let ψ ∈ L2(Ω,Cn) and ε > 0 be arbitrary. Then there is an ψ1 ∈ C∞c (Ω,Cn)
such that ||ψ − ψ1||L2 < 1

2
ε. Define α = 〈j|ψ1 and find M such that α

M
< 1

2
ε. Set

ψ2 = ψ1 − αδM , then ||ψ − ψ2||L2 < ε and 〈j|ψ2 = 0, proving density of Kj.

We will now apply the same method to Proposition 6.2, we first find analogues of
I and J , show that ran(T0 + λi) is the “orthogonal complement” of J and then
show that this is dense.

Lemma 6.5. Suppose u, g ∈ C∞c ((−ε, ε),C2) and λ2 = α2, then

d

dx
Iλu = Jλg

43



if and only if g = (T0 + λi)u, for

Iλ(s) =

(
1 + sf(s) λs

1
λ
f(s) 1

)
,

Jλ(s) = −i
(
λs 1 + sf(s)
1 1

λ
f(s)

)
.

Proof. We will show that

J−1
λ

d

dx
Iλ = (T0 + λi)

which proves the Lemma.

First we use the Leibniz identity, so

J−1
λ

d

dx
Iλ = J−1

λ Iλ
d

dx
+ Jλ

(
d

dx
Iλ

)
,

= J−1
λ Iλ

d

dx
+ J−1

λ I ′λ.

Let us compute these matrices

J−1
λ Iλ = −i

(
1
λ
f(s) −1− sf(s)
−1 λs

)(
1 + sf(s) λs

1
λ
f(s) 1

)
,

= −i
(

0 −1
−1 0

)
=

(
0 i
i 0

)
and

J−1
λ I ′λ = −i

(
1
λ
f(s) −1− sf(s)
−1 λs

)(
f(s) + sf ′(s) λ

1
λ
f ′(s) 0

)
,

= −i
(

1
λ
(f(s)2 − f ′(s)) f(s)
−f(s) −λ

)
.

We now use that for f(s) = α tan(αs) we have

f(s)2 − f ′(s) = α2 tan(αs)2 − α2 1

cos(αs)2
,

= α2

(
sin(αs)2

cos(αs)2
− 1

cos(αs)2

)
,

= −α2.
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Therefore, since α2 = λ2,

J−1
λ I ′λ = −i

(
−λ f(s)
−f(s) −λ

)
,

which proves

J−1
λ

d

dx
Iλ = J−1

λ Iλ
d

dx
+ J−1

λ I ′λ = T0 + λi.

Remark 6.6. We have similar functions for λ2 6= α2, define g(s) = 1
2
e
√
λ2−α2s +

1
2
e−
√
λ2−α2s. Then

Iλ(s) =

(
g(s) + 1

λ2−α2f(s)g′(s) λ
λ2−α2 g

′(s)
1
λ
(g′(s) + f(s)g(s)) g(s)

)
,

and Jλ(s) = −iIλ(s)( 0 1
1 0 ). We restrict to the case λ2 = α2 since it is sufficient

and provides a simpler expression.

The next step, following Example 6.3, is to show that the range of T0 + λi is the
“orthogonal complement” of Jλ in C∞c ((−ε, ε),C).

Lemma 6.7. For λ = ±α and Jλ as in Lemma 6.5 we have

ran(T0 + λi) =

{
g ∈ C∞c ((−ε, ε),C2)

∣∣∣∣ ∫ ε

−ε
J(x)g(x)dx = 0

}
.

Proof. Suppose g = (T0 + λi)u, then by Lemma 6.5∫ ε

−ε
J(x)g(x)dx =

∫ ε

−ε

(
d

dx
I(x)u(x)

)
dx = 0,

since u ∈ C∞c ((−ε, ε),C2). Also, g is indeed in C∞c ((−ε, ε),C2).

For the converse, suppose g ∈ C∞c ((−ε, ε),C2) such that
∫
Jg = 0. Define

u(x) = I−1(x)

∫ x

−ε
J(y)g(y)dy,

then certainly u ∈ C∞c ((−ε, ε),C2), and

d

dx
I(x)u(x) = J(x)g(x).

Then by Lemma 6.5 we have (T0 + λi)u = g.
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Finally we want to show that the range of T0 + λi is dense for λ = ±α, this is
very similar to Lemma 6.4 but not entirely, since this time we are dealing with a
matrix valued function.

Lemma 6.8. The range of T0 + λi is dense for λ = ±α.

Proof. Write j1 and j2 for the rows of Jλ, so

j1(s) = −i
(

λs
1 + sf(s)

)
,

j2(s) = −i
(

1
1
λ
f(s)

)
.

Then Lemma 6.7 tells us that the range of T0 + λi is Kj1 ∩Kj2 , in the notation of
Lemma 6.4.

To prove density of Kj1 ∩Kj2 we use the same strategy as in Lemma 6.4 to obtain
two sequences (δ1

m)m∈N and (δ2
m)m∈N such that 〈ji|δim = 1 and ||δim||L2 < 1

m
.

Write δim,1 and δim,2 for the first and second components of δim respectively, and
τ : (−ε, ε)→ (−ε, ε), τ(x) = −x. Since the first component of j1 is odd, while the
second component is even we may replace δ1

m by

δ̃1
m =

1

2

(
δ1
m − δ1

m ◦ τ
δ1
m + δ1

m ◦ τ

)
.

On the other hand, the first component of j2 is even, while the second component
is odd, so we may replace δ2

m by

δ̃2
m =

1

2

(
δ2
m + δ2

m ◦ τ
δ2
m − δ2

m ◦ τ

)
.

Replacing δim by δ̃im does not change the values of 〈ji|δim, and it does not increase
the norm of the δim. Furthermore, since the corresponding components of ji and
δ̃im now have opposite parity 〈j1|δ̃2

m = 〈j2|δ̃1
m = 0.

We can now complete the density proof similar to the final step in Lemma 6.4. Let
ψ ∈ L2((−ε, ε),C2) and ε > 0 be arbitrary. Then there is a ψ1 ∈ C∞c ((−ε, ε),C2)
such that ||ψ − ψ1||L2 < 1

3
ε. Let αi = 〈ji|ψ1 for i = 1, 2 and find M such that

αi
M
< 1

3
ε. Then ψ2 = ψ1 − α1δ̃

1
M − α2δ̃

2
M satisfies both 〈j1|ψ2 = 0, 〈j2|ψ2 = 0 and

||ψ − ψ2||L2 < ε.

We are now ready to prove Proposition 6.2.
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Proof. [Proof of Proposition 6.2]

The operator T0 is clearly symmetric and by Lemma 6.8 the range of T0 ± αi is
dense. Then by Theorem 2.32 T0 is essentially self-adjoint.

Define T to be the closure of T0, which is then self-adjoint.

6.2 Compact Resolvent

The other property of T we need is the compact resolvent, the main tool we use
is a computation of T 2 + λ2 = (T + iλ)(T − iλ). That computation allows us to
prove that the Sobolev norm of ψ gives a lower bound for the graph-norm of ψ
corresponding to T + λi.

Lemma 6.9. The graph-norm of T ± λi is larger than the Sobolev norm. Indeed,
for ψ ∈ C∞c ((−ε, ε),C2) we have ||ψ||2 + ||(T + iλ)ψ||2 > ||ψ||2 + ||ψ′||2.

Proof. We want to compute ||(T + iλ)ψ||2 for ψ ∈ C∞c ((−ε, ε),C2), the domain
of T0. The claim then follows for T by continuity. Using the symmetry of T this
equals 〈ψ, (T 2 + λ2)ψ〉, so let us compute T 2.

T 2 =

(
0 i∂s − if(s)

i∂s + if(s) 0

)2

=

(
−∂2

s − f ′(s) + f(s)2 0
0 −∂2

s + f ′(s) + f(s)2

)
.

Therefore

〈ψ, (T 2 + λ2)ψ〉 = 〈ψ,−ψ′′〉+ 〈ψ,
(
f(s)2 − f ′(s) + λ2 0

0 f(s)2 + f ′(s) + λ2

)
ψ〉.

For λ2 ≥ α2 both f(s)2±f ′(s)+λ2 ≥ 0, so the second term on the right-hand-side
is positive. Hence

〈ψ, (T 2 + λ2)ψ〉 ≥ 〈ψ,−ψ′′〉.

By partial integration 〈ψ,−ψ′′〉 = 〈ψ′, ψ′〉 so we find that

||(T + λi)ψ||2 ≥ ||ψ′||2.

This proves the desired result.

Corollary 6.10. The domain of T is contained in the first-order Sobolev space
H1((−ε, ε),C2).

Proposition 6.11. The resolvent (T + λi)−1 is compact for λ = ±α and hence
for all λ ∈ ρ(T ).
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Proof. Define D = {ψ ∈ L2((−ε, ε),C2)| ||ψ|| ≤ 1} the unit ball in L2. We will
prove that M := (T + λi)−1D is pre-compact.

Let ψ = (T + λi)−1φ, φ ∈ D. Then ||ψ|| ≤ |λ|−1 since ||(T + λi)−1|| ≤ |λ|−1 and
ψ ∈ dom(T ) ⊂ H1((−ε, ε),C2) by Corollary 6.10. Furthermore Lemma 6.9 tells
us that

||ψ′|| ≤ ||(T + λi)ψ|| = ||φ|| ≤ 1.

Since α < 1 by construction we may conclude that

M ⊂
{
ψ ∈ H1((−ε, ε),C2)

∣∣ ||ψ′|| ≤ α−1, ||ψ|| ≤ α−1
}
.

By the Rellich embedding theorem the right hand side set is compact, so that M
is pre-compact. Compactness of the resolvents for λ 6= ±α follows from the first
resolvent identity (T + λi)−1 = (T + αi)−1 + (λ− α)(T + λi)−1(T + αi)−1.

Remark 6.12. The operator T 2 + λ2 is actually a Schrödinger type operator on
L2((−ε, ε),C2), which for λ large enough has positive potential. It is a classical
result that Schrödinger operators with bounded potential on a bounded domain and
Schrödinger operators on an unbounded domain with a confining potential have
compact resolvents. The reason we did not use these classical results is that we are
dealing with a combined case here, while f(s)2 − f ′(s) + λ2 is a bounded potential,
f(s)2 + f ′(s) + λ2 is unbounded (it is, however, confining). Therefore we chose to
do a direct proof along the lines of proofs for Schrödinger operators as found in
[RS80].

Remark 6.13. An alternative proof goes as follows. Note that f(s)2−f ′(s)+α2 =
0 so that the upper left component of T 2 + α2 is simply −∂2

s which clearly has
compact resolvent, let ψn denote the corresponding basis of eigenvectors. Then use
the transformation ψn 7→ φn = 1

α
(ψ′n+fψ) to construct eigenvectors for the bottom

right component of T 2 + α2 with the same eigenvalues.

The vectors (ψn, φn) then form a set of orthonormal eigenvectors for T 2 +α2 with
eigenvalues tending to infinity, so that (T 2 +α2)−1 is compact. From there we can
construct a set of eigenvectors for T that also have eigenvalues tending to infinity
proving that T has compact resolvent.

We did not use this method since it relies heavily on the precise choice for f and
α, while the proof in Proposition 6.11 relies only on f(s)2 − f ′(s) being bounded
from below, which is a much lighter condition.

48



6.3 Multiplicative Unit

We will now show that (L2((−ε, ε),C2), b(T )) has index 1, so that this cycle rep-
resents the multiplicative unit in KK0(C,C) by Section 3.3.

Lemma 6.14. Let H be a Hilbert space and D : dom(D) → H an unbounded
operator. Then

dim kerD = dim ker b(D).

Proof. Recall from Definition 2.30 that

b(D) = D(1 +D∗D)−
1
2 .

On dom(D) this equals (1 +DD∗)−
1
2D, so if Dψ = 0 also b(D)ψ = 0.

Conversely, we have

D = b(D)(1− b(D)∗b(D))−
1
2 ,

defined on dom(D) = ran
(

(1− b(D)∗b(D))
1
2

)
. Suppose b(D)ψ = 0, then (1 +

b(D)∗b(D))
1
2ψ = ψ so ψ ∈ dom(D). On dom(D) we may move b(D) to the right

so that Dψ = (1− b(D)b(D)∗)−
1
2b(D), so if b(D)ψ = 0, also Dψ = 0.

Therefore ker(D) = ker(b(D)).

Remark 6.15. A more complete treatment of the bounded transform can be found
in [Lan95, Ch. 10].

Proposition 6.16. Index(b(T )) = 1

Proof. Write T+ = i∂s + if(s) and T− = i∂s − if(s) = T ∗+ so that T =
(

0 T+
T− 0

)
.

The bounded transform of T is

b(T ) =

(
0 T−(1 + T+T−)−

1
2

T+(1 + T+T−)−
1
2 0

)
.

so that the (graded) index of T is the index of b(T+) = T+(1 + T+T−)−
1
2 .

By Lemma 6.14 ker b(T+) = kerT+ and ker b(T+)∗ = ker b(T ∗+) = ker(T−). Now
u ∈ kerT+ if and only if u satisfies the differential equation

0 = iu′(s) + if(s)u(s).

This is a first-order, one dimensional ODE so all solutions are given by

u(s) = Ce−F (s)
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for C ∈ C and F a primitive function for f .

A primitive function for f(s) = α tan(αs) is F (s) = − ln(cos(αs)), so the kernel of
T+ is given by constant multiples of u+(s) = cos(αs), so kerT+ = Cu+. Similarly
we find that the kernel of T− is given by constant multiples of u−(s) = cos(αs)−1,
however u− is not an L2(−ε, ε) function so kerT− = {0}. Hence Index(T ) =
dim ker(T+)− dim ker(T−) = 1.

50



7 Product of Immersion module with R2

Now that we have all the ingredients we are ready to prove that [S1]⊗1 = ι!⊗ [R2]
at the unbounded level. Let us first give a short overview of the ingredients.

ι! =
[(
E = C0(S1 × (−ε, ε)), S = f(s)

)]
∈ KK1(C(S1), C0(R2)),

[S1] =

[(
L2(S1), DS1 = i

d

dθ

)]
∈ KK1(C(S1),C),

[R2] =

[(
L2(R2,C2), DR2 = iγ1 ∂

∂r
+ i

1

r
γ2 ∂

∂θ
+ i

1

2r
γ1; γ3

)]
∈ KK0(C0(R2),C),

1 =

[(
L2((−ε, ε),C2), T = iγ1 d

ds
+ γ2f(s); γ3

)]
∈ KK0(C,C).

We choose our γ-matrices as

γ1 =

(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
, γ3 =

(
1 0
0 −1

)
.

Before we compute the product ι!⊗ [R2] we want to make all our cycles even, since
that is where the criterion of Kucerovsky [Kuc96] is applicable. To do this we use
the doubling procedure described in Lemma 4.4. We get

ι̃! =
[(
Ẽ = E ⊗ C2, S̃ = S ⊗ γ2; 1⊗ γ3

)]
∈ KK0(C(S1)⊗ Cl1,C)

where g1 ⊗ 1 + g2 ⊗ e ∈ C(S1) ⊗ Cl1 acts via g1 ⊗ 1 + g2 ⊗ γ1. The connection

∇E is doubled to ∇̃E = ∇E ⊗ 1. Similarly we need to make [S1] even by the same
process, yielding

[̃S1] =

[(
L2(S1)⊗ C2, i

d

dθ
⊗ γ2; 1⊗ γ3

)]
∈ KK0(C(S1)⊗ Cl1,C).

We will now first, in Section 7.1, compute the product of ι̃! and [R2] using the
connection we have on ι!. Since our cycles do not satisfy the assumptions in
[KL13], we cannot immediately claim that the product operator we find will be
self-adjoint or compactly resolved. Therefore we will prove that the product does
have these properties in Sections 7.2 and 7.3 respectively.

Then in Section 7.4 we use Kucerovsky’s conditions to verify that our product
based on the connection indeed represent the product of ι̃! and [R2]. Finally we

show that our product cycle also represents the product of [̃S1] and 1 in Section
7.5.
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7.1 Form of the product operator

In order to compute the product of ι̃! and [R2] we first simplify the balanced tensor
product Ẽ ⊗C0(R2) L

2(R2,C2) into a single Hilbert space, so that we can express
our product operators as operators on this simplified Hilbert space.

Lemma 7.1. The balanced tensor product of Ẽ and L2(R2,C2) is unitarily equiva-
lent as graded Hilbert C(S1)-C bimodule to L2(S1×(−ε, ε))⊗C2⊗C2 with grading
1⊗ γ3 ⊗ γ3.

Proof. This follows directly from unitarity of the map

U ′ : E ⊗C0(R2) L
2(R2)→ L2(S1 × (−ε, ε)),

U ′(g ⊗ ψ)(θ, s) = g(θ, s)ψ(θ, s+ 1),

by L2(R2,C2) = L2(R2)⊗ C2 and setting

U(g ⊗ v ⊗ ψ ⊗ w) = U ′(g ⊗ ψ)⊗ v ⊗ w.

Let us check that U ′ is indeed a unitary.

〈U ′(g ⊗ ψ),U ′(g′ ⊗ ψ′)〉L2(S1×(−ε,ε))

=

∫
S1×(−ε,ε)

g(θ, s)ψ(θ, s+ 1)g′(θ, s)ψ′(θ, s+ 1)dsdθ,

=

∫
S1×(1−ε,1+ε)

ψ(θ, r)
1

r
g(θ, r − 1)g′(θ, r − 1)ψ′(θ, r)rdrdθ,

=

∫
R2

ψ(θ, r) 〈g, g′〉E(θ, r)ψ′(θ, r)rdrdθ,

= 〈ψ, 〈g, g′〉E · ψ′〉L2(R2),

= 〈g ⊗ ψ, g′ ⊗ ψ′〉E⊗L2(R2).

Furthermore U ′ is surjective since χS1×(1−ε,1+ε) ∈ L2(R2) so that the L2-dense set
C0(S1 × (−ε, ε)) is in the range of U ′.

Now that we have a convenient space for the product operator to act on it is time
to compute the product operator itself, using Definition 4.12 and the connection
∇E .

Proposition 7.2. Write U for the unitary equivalence from Lemma 7.1. The
product operator is

U(S ⊗ 1 + γ3 ⊗∇E DR2)U∗ = f(s)⊗ γ2 ⊗ 1 + i∂s ⊗ γ3 ⊗ γ1 + i
1

1 + s
∂θ ⊗ γ3 ⊗ γ2.
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Proof. We will start with U(S̃⊗ 1)U∗. It will be convenient to write L2(R2,C2) ∼=
L2(R2)⊗ C2. Let g ⊗ v ⊗ ψ ⊗ w ∈ E ⊗ C2 ⊗ L2(R2)⊗ C2. Then

S̃ ⊗ 1 = S ⊗ γ2 ⊗ 1L2(R2) ⊗ 1C2

so

U(S̃ ⊗ 1)(g ⊗ v ⊗ ψ ⊗ w)(θ, s) = U(Sg ⊗ γ2v ⊗ ψ ⊗ w)(θ, s),

= f(s)g(θ, s)ψ(θ, s+ 1)⊗ γ2v ⊗ w,
=
(
f(s)⊗ γ2 ⊗ 1C2

)
U(g ⊗ v ⊗ ψ ⊗ w)(θ, s).

Hence U(S̃ ⊗ 1)U∗ = f(s)⊗ γ2 ⊗ 1C2 .

Using a similar approach we will compute U(γ3 ⊗∇E DR2)U∗.

γ3 ⊗∇E DR2(g ⊗ v ⊗ ψ ⊗ w) =g ⊗ γ3v ⊗DR2(ψ ⊗ w) +∇E(g ⊗ γ3v) · (f ⊗ w),

=g ⊗ γ3v ⊗
(
i∂rψ ⊗ γ1w + i

1

r
∂θψ ⊗ γ2w + i

1

2r
ψ ⊗ γ1w

)
+∇E∂r(g)⊗ γ3v ⊗ (ic(dr)(ψ ⊗ w))

+∇E∂θ(g)⊗ γ3v ⊗ (ic(dθ)(ψ ⊗ w)) ,

=ig ⊗ γ3v ⊗
(
∂rψ ⊗ γ1w +

1

r
∂θψ ⊗ γ2w +

1

2r
ψ ⊗ γ1w

)
+

(
∂sg −

1

2(s+ 1)
g

)
⊗ γ3v ⊗ ψ ⊗ iγ1w

+ (∂θg)⊗ γ3v ⊗ 1

r
ψ ⊗ iγ2w.

For notational purposes we now move both the C2 components to the right, then

γ3 ⊗∇E DR2(g ⊗ ψ ⊗ v ⊗ w) =i (g ⊗ ∂rψ + ∂sg ⊗ ψ)⊗ γ3v ⊗ γ1w

+ i

(
g ⊗ 1

2r
ψ − 1

2(s+ 1)
g ⊗ ψ

)
⊗ γ3v ⊗ γ1w

+ i

(
g ⊗ 1

r
∂θψ + ∂θg ⊗

1

r
ψ

)
⊗ γ3v ⊗ γ2w.

The second term in this expression is 0, since we may move the 1
2r

over the ten-
sorproduct at the cost of changing r into s + 1, since that is how C0(R2) acts on
E . Under the map U the remaining terms equal

U(γ3 ⊗∇E DR2)(g ⊗ ψ ⊗ v ⊗ w) =i∂sU
′(g ⊗ ψ)⊗ γ3v ⊗ γ1w

+ i
1

1 + s
∂θU

′(g ⊗ ψ)⊗ γ3v ⊗ γ2w,
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where we use the U ′ from Lemma 7.1. Therefore

U(γ3 ⊗∇E DR2)U∗ = i∂s ⊗ γ3 ⊗ γ1 + i
1

1 + s
∂θ ⊗ γ3 ⊗ γ2.

Finally, we arrive at

U(S ⊗ 1 + γ3 ⊗∇E DR2)U∗ = f(s)⊗ γ2 ⊗ 1C2 + i∂s ⊗ γ3 ⊗ γ1 + i
1

1 + s
∂θ ⊗ γ3 ⊗ γ2

Our eventual goal is to show that this operator represents the product of [̃S1] and

1. The operator for the product of ˜[S1] and 1 should be of the form

D̃S1 ⊗ 1 + γ3 ⊗ T,

there is no connection since this tensor product is only balanced over C. Since
D̃S1 = DS1 ⊗ γ2 and writing T = i∂sγ

1 + f(s)γ2 we see that we are close but not
quite there yet. We would like the ∂θ term to have a γ2 ⊗ 1 while we would like
the f(s) term to have a γ3 ⊗ γ2. Fortunately, this is possible.

Lemma 7.3. There is a unitary transformation V : C2⊗C2 → C2⊗C2 such that

V (γ3 ⊗ γ3)V ∗ = γ3 ⊗ γ3, V (γ2 ⊗ 1)V ∗ = γ3 ⊗ γ2,

V (γ3 ⊗ γ1)V ∗ = γ3 ⊗ γ1, V (γ3 ⊗ γ2)V ∗ = γ2 ⊗ 1.

Proof. A set of straightforward calculations shows that the map V = 1√
2
(γ3 ⊗ 1 +

γ2 ⊗ γ2) works.

Notation 7.4. We write

D× = V U(S̃ × 1 + γ3 ⊗∇̃E DR2)U∗V ∗,

= f(s)⊗ γ3 ⊗ γ2 + i∂s ⊗ γ3 ⊗ γ1 + i
1

1 + s
∂θ ⊗ γ2 ⊗ 1.

and call D× the product operator.

Proposition 7.5. The triple(
L2(S1 × (−ε, ε))⊗ C2 ⊗ C2, D×; 1⊗ γ3 ⊗ γ3

)
defines an unbounded KK0(C(S1),C) cycle. (The domain of D× will be defined in
Corollary 7.12.)
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Proof. Since L2(S1 × (−ε, ε)) ⊗ C2 ⊗ C2 ∼= Ẽ ⊗C0(R2) L
2(R2,C2) we know from

Theorem 2.16 that L2(S1 × (−ε, ε))⊗C2 ⊗C2 is a graded Hilbert C(S1)⊗Cl1-C
bimodule. A simple check shows that D× is odd, so we have to show that D× is
self adjoint, which we do in Corollary 7.12, and has compact resolvent which we
do in Proposition 7.17.

Note that along the circle, where s = 0, we have that D× is the sum of the Dirac
operator on S1 with an operator representing the KK0(C,C) multiplicative unit,
as announced in the introduction.

Remark 7.6. Unfortunately, our cycles do not satisfy the assumptions of Theorem
4.13 since

[S ⊗ 1, γ ⊗∇ DR2 ](i+ S ⊗ 1)−1 =
∂f(s)

∂s
· 1

i+ f(s)
,

=
α2

cos(αs)
· 1

i cos(αs) + α sin(αs)

is unbounded. That this is not a consequence of our choice for f can be seen as
follows.

Suppose f ′ ≤ Cf for some C, which is equivalent to relative boundedness of the
commutator, then f ′ = g ·f with |g| ≤ C. The solution to this differential equation
is f = eG with G a primitive for g, but G(x) ≤ G(0)+Cx so f(x) ≤ eG(0)+Cx which
means f cannot go to infinity in finite time as we require. For further discussion
see Section 8.

7.2 Self-adjointness of product operator

For this section and the next we want to rearrange our Hilbert space L2(S1 ×
(−ε, ε))⊗ C2 ⊗ C2 once more. We will use

L2(S1 × (−ε, ε))⊗ C2 ⊗ C2 ∼= L2((−ε, ε),C2)⊗ L2(S1,C2)

such that under this identification

D× =
(
f(s)⊗ γ2 + i∂s ⊗ γ1

)
⊗ γ3 +

1

1 + s
⊗
(
iγ2∂θ

)
,

=

(
0 i∂s − if(s)

i∂s + if(s) 0

)
⊗
(

1 0
0 −1

)
+

1

1 + s

(
1 0
0 1

)
⊗
(

0 ∂θ
−∂θ 0

)
.

This first term is the operator T from Section 6, which we know to be essentially
self-adjoint on the domain C∞c ((−ε, ε),C2) by Proposition 6.2. Also

(
0 ∂θ
−∂θ 0

)
is
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essentially self-adjoint on C∞(S1,C2). The other factors are bounded, self adjoint
operators which leads us to investigate operators of the form D1 ⊗ A + B ⊗ D2

where D1, D2, A,B are all self-adjoint and A,B are bounded.

Intuitively the idea is that the bounded operators do not influence the domains,
similar to how D1 + B would be self-adjoint on dom(D1) and that D1 and D2

do not influence each other in a relevant way since they act on separate tensor
product factors. However, to make this precise we will use a concept from van den
Dungen [Dun16].

Definition 7.7. Let D : dom(D) → H be a densely defined symmetric operator
on some Hilbert space H. An adequate approximate identity for D is a sequential
approximate identity {φk}k∈N on H such that φk dom(D∗) ⊂ dom(D), [D,φk] is

bounded on dom(D) and supk∈N ||[D,φk]|| <∞.

Remark 7.8. Van den Dungen gives the previous definition in the context of
Hilbert modules. We will keep ourselves to the Hilbert space case, even though
Proposition 7.9 continues to hold in the Hilbert module setting, albeit with a more
intricate proof.

The following result is the reason we introduce these adequate approximate iden-
tities.

Proposition 7.9. Let D : dom(D)→ H be a densely defined symmetric operator
on a Hilbert space H, and suppose {φk}k∈N is an adequate approximate identity
for D. Then D is essentially self-adjoint.

Proof. See [Dun16].

We also have the, much easier, converse.

Lemma 7.10. Suppose D : dom(D) → H is a self-adjoint operator. Then
φk := D(1 + 1

k2
D2)−1 defines an adequate approximate identity {φk}k∈N for D.

Furthermore ||(1 + 1
k2
D2)−1|| ≤ 1 and ||D(1 + 1

k2
D2)−1|| ≤ k.

Proof. The norm-estimates, as well as the fact that {φk} defines an approximate
unit, are in [Ped89, Thm 5.1.9]. Furthermore, this theorem tells us that [D,φk] = 0
on dom(D). The only remaining requirement is then that φk dom(D) ⊂ dom(D),
we even have the stronger result that φkH ⊂ dom(D) since φk = k2(D+ki)−1(D−
ki)−1 and the resolvents map H into dom(D).

We are now ready to return to our case of interest.

Proposition 7.11. Let D1 : dom(D1)→ H1 and D2 : dom(D2)→ H2 be densely
defined self-adjoint operators on Hilbert spaces H1 and H2. Let A : H2 → H2 and
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B : H1 → H1 be bounded, self-adjoint operators, such that ||(1+ 1
k2
D2

1)−1[B,D2
1](1+

1
k2
D2

1)−1|| ≤ c1k and ||(1+ 1
k2
D2

2)−1[A,D2
2](1+ 1

k2
D2

2)−1|| ≤ c2k for some c1, c2 ∈ R.
Then D1 ⊗ A+B ⊗D2 is essentially self-adjoint on dom(D1)⊗alg dom(D2).

Proof. We will show that

φk := (1 +
1

k2
D2

1)−1 ⊗ (1 +
1

k2
D2

2)−1

is an adequate approximate identity for D1⊗A+B⊗D2, and then invoke Propo-
sition 7.9. For ease of notation introduce a = D1 ⊗ A+B ⊗D2.

Let us first show that φk is an approximate identity for H1 ⊗ H2. Since {(1 +
1
k2
D2

1)−1)}k∈N and {(1 + 1
k2
D2

2)−1)}k∈N are approximate identities for H1 and H2

by Lemma 7.10, φk is clearly an approximate unit for elementary tensors. Suppose
z = limn zn, z ∈ H1 ⊗H2 and zn ∈ H1⊗algH2. Then

||z − φkz|| = ||z − zn + zn − φkzn + φkzn − φkz||,
≤ ||z − zn||+ ||zn − φkzn||+ ||φk|| · ||zn − z||.

For any ε > 0 we can find an N such that ||z− zN || < ε
3
, and for zN we can find a

K such that ||zN −φkzN || < ε
3

for all k ≥ K. Since ||φk|| = ||(1 + 1
k2
D2

1)−1|| · ||(1 +
1
k2
D2

2)−1|| ≤ 1, we get for k ≥ K that ||z − φkz|| < ε so that φk is an approximate
unit.

Now we show that φk dom(a∗) ⊂ dom(a), in fact we will show the stronger φkH1⊗
H2 ⊂ dom(a) similar to what we saw in Lemma 7.10. We will use that aφk is
bounded, indeed

||aφk|| = ||(D1 ⊗ A+B ⊗D2)(1 +
1

k2
D2

1)−1 ⊗ (1 +
1

k2
D2

2)−1||,

= ||D1(1 +
1

k2
D2

1)−1 ⊗ A(1 +
1

k2
D2

2)−1 +B(1 +
1

k2
D2

1)−1 ⊗D2(1 +
1

k2
D2

2)−1||,

≤ ||D1(1 +
1

k2
D2

1)−1 ⊗ A(1 +
1

k2
D2

2)−1||+ ||B(1 +
1

k2
D2

1)−1 ⊗D2(1 +
1

k2
D2

2)−1||,

= ||D1(1 +
1

k2
D2

1)−1|| · ||A(1 +
1

k2
D2

2)||+ ||B(1 +
1

k2
D2

1)−1|| · ||D2(1 +
1

k2
D2

2)−1||,

≤ k||A||+ ||B||k.

Let again z ∈ H1 ⊗ H2, z = limn zn, zn ∈ H1⊗algH2 and fix k. Clearly φkzn ∈
dom(a) = dom(D1)⊗alg dom(D2) and φkzn → φkz since φk is bounded. Moreover,
as we just saw, aφk is bounded so that aφkzn → aφkz. Hence φkz ∈ dom(a), since
we have a sequence in dom(a) for which the images under a also converge.

57



Finally we consider [a, φk] on dom(a), and show that these commutators are
bounded uniformly in k. Recall from the proof of Lemma 7.10 that Di and
(1 + 1

k2
D2
i )
−1 commute on dom(Di). Then

[a, φk] =[D1 ⊗ A+B ⊗D2, (1 +
1

k2
D2

1)−1 ⊗ (1 +
1

k2
D2

2)−1],

=[D1 ⊗ A, (1 +
1

k2
D2

1)−1 ⊗ (1 +
1

k2
D2

2)]

+ [B ⊗D2, (1 +
1

k2
D2

1)−1 ⊗ (1 +
1

k2
D2

2)−1],

=[D1, (1 +
1

k2
D2

1)−1]⊗ A(1 +
1

k2
D2

2)−1

+D1(1 +
1

k2
D2

1)−1 ⊗ [A, (1 +
1

k2
D2

2)−1]

+ [B, (1 +
1

k2
D2

1)−1]⊗D2(1 +
1

k2
D2

2)−1

+B(1 +
1

k2
D2

1)−1 ⊗ [D2, (1 +
1

k2
D2

2)−1],

=D1(1 +
1

k2
D2

1)−1 ⊗ [A, (1 +
1

k2
D2

2)−1]

+ [B, (1 +
1

k2
D2

1)−1]⊗D2(1 +
1

k2
D2

2)−1.

Since ||Di(1 + 1
k2
D2
i )
−1|| ≤ k we want to bound [A, (1 + 1

k2
D2

2)−1] and [B, (1 +
1
k2
D2

1)−1] by something of order 1
k
.

First note that

[B, (1 +
1

k2
D2

1)−1] = (1 +
1

k2
D2

1)−1[1 +
1

k2
D2

1, B](1 +
1

k2
D2

1)−1,

= − 1

k2
(1 +

1

k2
D2

1)−1[B,D2
1](1 +

1

k2
D2

1)−1.

By assumption there exists a c such that

||(1 +
1

k2
D2

1)−1[B,D2
1](1 +

1

k2
D2

1)−1|| ≤ c1k

which implies

||[B, (1 +
1

k2
D2

1)−1]|| ≤ c1
1

k
.

By the same reasoning we get

||[A, (1 +
1

k2
D2

2)−1]|| ≤ c2
1

k
.
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Together this implies ||[a, φk]|| ≤ c1 + c2.

Now that we have established that φk is an adequate approximate identity for a,
we find that a is essentially self-adjoint by Proposition 7.9.

Corollary 7.12. The operator D× is essentially self-adjoint on domain dom(D×) =
dom(T )⊗alg dom(iγ2∂θ).

Proof. Referring to the notation of Proposition 7.11 we have D1 = T , A = γ3,
B = 1

1+s
1C2 and D2 = iγ2∂θ. Let us compute the relevant commutators.

[A,D2
2] = [γ3, (iγ2∂θ)

2],

= [γ3,−∂2
θ ],

= 0.

[B,D2
1] =

[
1

1 + s
1C2 ,

(
−∂2

s + f(s)2 − f ′(s) 0
0 −∂2

s + f(s)2 + f ′(s)

)]
,

=

[
1

1 + s
,−∂2

s

]
1C2 ,

=

(
2

(1 + s)3
+

2

(1 + s)2
∂s

)
1C2 .

We will prove that ∂s(1+ 1
k2
T 2)−1 is bounded by ck for some c. From Lemma 6.9 we

know that for λ = ±α we have ||(T + λi)ψ|| ≥ ||ψ′||. This also holds for |λ| ≥ α
since T is symmetric. In particular ||(T + mi)ψ|| ≥ ||ψ′|| for all m ∈ Z \ {0}.
Furthermore ||(T + mi)ψ|| ≥ m||ψ|| for all m ∈ Z and ψ ∈ dom(T ), again by
symmetry of T .

Let φ be arbitrary in L2((−ε, ε),C2) and φ = (1 + 1
k2
T 2)ψ, this is possible since

(1 + 1
k2
T 2) = 1

k2
(T − ki)(T + ki) and these are surjective. Consider

||φ|| = ||(1 +
1

k2
T 2)ψ||,

=
1

k2
||(T − ki)(T + ki)ψ||,

≥ 1

k2
k||(T + ki)ψ||,

≥ 1

k
||ψ′||.
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Then

||∂s(1 +
1

k2
T 2)−1φ|| = ||∂sψ||,

= ||ψ′||,
≤ k||φ||.

So ||∂s(1 + 1
k2
T 2)−1|| ≤ k, which in turn means that

||(1 +
1

k2
D2

1)−1[B,D2
1](1 +

1

k2
D2

1)−1|| ≤ 1 ·
(

2

(1− ε)3
· 1 +

2

(1− ε)2
· k
)
,

≤ 4

(1− ε)3
k.

Therefore Proposition 7.11 applies.

Corollary 7.13. If D1 and D2 are essentially self-adjoint on dom(D1) and dom(D2)
and satisfy the assumptions in Proposition 7.11, then D1⊗A+B⊗D2 is essentially
self-adjoint on dom(D1)⊗alg dom(D2).

Proof. Write dom(D1) and dom(D2) for the domains of self-adjointness of D1

and D2. Then we know that D1 ⊗ A + B ⊗ D2 is essentially self-adjoint on
dom(D1)⊗alg dom(D2). Write a0 for the closure of D1 ⊗ A + B ⊗ D2 defined
on dom(D1)⊗alg dom(D2) and a for the closure on dom(D1)⊗alg dom(D2).

Clearly a0 ⊂ a, so we want to show that a ⊂ a0. This follows if we can show that
dom(D1)⊗alg dom(D2) ⊂ dom(D1)⊗alg dom(D2), with the closure taken in the
graph-norm of a. So suppose ψ ⊗ φ ∈ dom(D1)⊗alg dom(D2). Then ψ = lim xn,
φ = lim yn such that D1ψ = limD1xn and D2φ = limD2yn, with xn ∈ dom(D1)
and yn ∈ dom(D2) since the Di are essentially self-adjoint on the dom(Di). But
then

||a(xn ⊗ yn)−a(ψ ⊗ φ)||
=||(D1 ⊗ A)(xn ⊗ yn − ψ ⊗ φ) + (B ⊗D2)(xn ⊗ yn − ψ ⊗ φ)||,
≤||D1xn ⊗ Ayn −D1ψ ⊗ Ayn||+ ||D1ψ ⊗ Ayn −D1ψ ⊗ Aφ||

+ ||Bxn ⊗D2yn −Bxn ⊗D2φ||+ ||Bxn ⊗D2φ−Bψ ⊗D2φ||,
≤||D1(xn − ψ)|| · ||Ayn||+ ||D1ψ|| · ||A(yn − φ)||

+ ||Bxn|| · ||D2(yn − φ)||+ ||B(xn − ψ)|| · ||D2φ||

tends to zero. Therefore ψ ⊗ φ ∈ dom(D1)⊗alg dom(D2) (closure in the graph
norm) so that a ⊂ a0.
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A remark about self-adjointness of γ ⊗∇ DR2 is in order here. In [KL13] self-
adjointness of the product operator is proven by showing that D1⊗1 and γ⊗∇D2

separately are (essentially) self-adjoint and that they anti-commute, which then
proves that their sum is again (essentially) self-adjoint.

In our case γ⊗∇DR2 is not essentially self-adjoint on the domain C∞0 (S1×(−ε, ε))
(with the appropriate unitary transformations and added spinor components). It
is however essentially self-adjoint on domains of the form domφ = {f ∈ C∞(S1 ×
(−ε, ε))|f(−ε) = eiφf(ε)} for some φ ∈ R. This can be proven using Proposition
7.11 and [Lax02, Example 33.3]. These domains domφ are not the domain specified
in [KL13], which is C∞0 (S1 × (−ε, ε)), neither is there any obvious choice of φ.

7.3 Compact Resolvent of product operator

To prove that the resolvent of D× is compact we invoke some fairly heavy machin-
ery, in the form of the min-max principle.

Theorem 7.14 (min-max principle). Let D : dom(D)→ H be a self-adjoint opera-
tor that is bounded below. Then D has compact resolvent if and only if µn(D)→∞
as n→∞, where

µn(D) = sup
φ1,...,φn−1

UD(φ1, ..., φn−1),

UD(φ1, ..., φm) = inf
ψ∈dom(D),||ψ||=1,ψ⊥φk∀k

〈ψ,Aψ〉.

Proof. See theorems XIII.1 and XIII.64 in [RS80].

We will also use the following characterization of compact resolvents.

Theorem 7.15. Let D : dom(D) → H be a self-adjoint operator that is bounded
below. Then D has compact resolvent if and only if there exists a complete or-
thonormal basis of eigenvectors {φn}n∈N, φn ∈ dom(D) with eigenvalues λ1 ≤
λ2 ≤ ... and λn →∞

Proof. See theorem XIII.64 in [RS80].

We will apply the min-max principle to D2
×, which is positive, and hence bounded

below, since it is the square of a self-adjoint operator. However, before we do we
want to prove a link between the eigenvectors of the square of a compactly resolved
self-adjoint operator and the operator itself.

Proposition 7.16. Let D : dom(D) → H be a self-adjoint operator such that
D2 : dom(D2) → H has compact resolvent. Then D also has compact resolvent.
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Furthermore there exists a complete orthonormal basis of eigenvectors {φn}n∈N
such that Dφn = νnφn and D2φn = ν2

nφn, with ν2
n →∞.

Proof. The operator D2 is self-adjoint and bounded below, being the square of a
self-adjoint operator, and has compact resolvent by assumption. Therefore we get
a complete orthonormal basis of eigenvectors {φ̃n} by Theorem 7.15.

Let Eλ be the eigenspace corresponding to an eigenvalue λ, then dim(Eλ) < ∞
since λn →∞. Since D and D2 commute, D preserves the eigenspaces Eλ. More-
over, Eλ ⊂ dom(D2) so D|Eλ is a self-adjoint operator on a finite dimensional
space, hence diagonalizable.

Let {φn} be the transformation of {φ̃n} such that D|Eλ is diagonal for all eigen-
values λ. Then Dφn = νnφn and clearly ν2

n = λn.

Proposition 7.17. The operator D2
× has compact resolvent.

Proof. We will show that µn(D×)→∞ and invoke Theorem 7.14.

Recall that D× = T ⊗ γ3 + 1
1+s
⊗ iγ2∂θ, so that

D2
× = T 2 ⊗ 1C2 +

1

(1 + s)2
⊗
(
−∂2

θ

)
+

[
T,

1

1 + s

]
⊗ γ1∂θ,

= T 2 ⊗ 1C2 +
1

(1 + s)2
⊗
(
−∂2

θ

)
+−iγ1 1

(1 + s)2
⊗ γ1∂θ.

Since T has compact resolvent, so does T 2 which means that by Theorem 7.15
there is a complete orthonormal basis of eigenvectors {ψn}n∈N ⊂ L2((−ε, ε),C2)
for T with eigenvalues λn. Similarly we get a complete orthonormal basis of eigen-
vectors {φn}n∈N ⊂ L2(S1,C2) for iγ2∂θ with eigenvalues νn. We also have that the
sequences λ2

n and ν2
n are increasing and tend to infinity.

The set {ψk ⊗ φl}(k,l)∈N×N is a complete orthonormal set for L2((−ε, ε),C2) ⊗
L2(S1,C2), using this set we will show that µn(D2

×) → ∞. It is clear from the
definition of µn(D2

×) that the µn(D2
×) form an increasing sequence, so it is sufficient

to show that µn2+1(D2
×)→∞.

Fix n ∈ N, we will compute a lower bound for UD2
×

({ψk ⊗ φl}1≤k,l≤n), which in

turns gives a lower bound for µn2+1(D2
×). Since {ψk ⊗ φl}(k,l)∈N×N is a complete

set any element of dom(D2
×) is a limit of a sequence of finite linear combinations
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of the ψk ⊗ φl. This leads us to consider

〈ψk ⊗ φl, D2
×(ψk ⊗ φl)〉 =〈ψk ⊗ φl, (T 2 ⊗ 1C2)ψk ⊗ φl〉

+ 〈ψk ⊗ φl,
(

1

(1 + s)2
⊗
(
−∂2

θ

))
ψk ⊗ φl〉

+ 〈ψk ⊗ φl,
(
−iγ1 1

(1 + s)2
⊗ γ1∂θ

)
ψk ⊗ φl〉,

=λ2
k + 〈ψk,

1

(1 + s)2
ψk〉ν2

l + 〈ψk,−iγ1 1

(1 + s)2
ψk〉〈φl, γ1∂θφl〉,

=λ2
k +

∣∣∣∣∣∣∣∣ 1

1 + s
ψk

∣∣∣∣∣∣∣∣2 ν2
l + νl〈ψk,−iγ1 1

(1 + s)2
ψk〉〈φl, γ3φl〉.

While no longer obvious from this last expression, this is in fact a real number.
Moreover, since 1

1+s
is bounded below by 1

1+ε
on (−ε, ε) we find that

〈ψk ⊗ φl, D2
×ψk ⊗ φl〉 ≥ λ2

k +
1

(1 + ε)2
ν2
l −

1

(1− ε)2
νl,

where we used Cauchy-Schwartz to find a lower bound for the rightmost term.

Every element Ψ of dom(D2
×) can be written

Ψ =
∞∑

k,l=0

α(k,l)ψk ⊗ φl

since the {ψk⊗φl} form a complete orthonormal basis. Moreover ||Ψ||2 =
∑∞

k,l=0 |α(k,l)|2
and Ψ ⊥ φk ⊗ φl if and only if α(k,l) = 0. Then

〈Ψ, D2
×Ψ〉 =

∞∑
k,l=0

|α(k,l)|2〈ψk ⊗ φl, D2
×ψk ⊗ φl〉.

since D×Ψ =
∑
α(k,l)D×ψk ⊗ φl.

If Ψ is an admissible element in the infimum of UD2
×

({ψk⊗φl}1≤k,l≤n), then α(k,l) =

0 for k, l ≤ n and
∑
|α(k,l)|2 = 1, which means

〈Ψ, D2
×Ψ〉 ≥ λ2

n+1 +
1

(1 + ε)2
ν2
n+1 −

1

(1− ε)2
νn+1.

The right hand side of this equation tends to infinity as n tends to infinity, so
µn2+1(D2

×)→∞ as desired.
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7.4 The Kasparov product of ι̃! and [R2]

According to Proposition 7.5 the data (L2(S1×(−ε, ε))⊗C2⊗C2), D×; 1⊗γ3⊗γ3)
defines an unbounded spectral triple. We constructed this cycle using a connection
from the two cycles (Ẽ , S̃; γ3) and (L2(R2), DR2 ; γ3) with the intention that it
represented their product, inspired by [KL13].

Let us now verify that we have indeed accomplished this. We will prove this using
Kucerovsky’s criterion (Theorem 4.8).

Proposition 7.18. The KK0(C(S1),C) cycle (L2(S1×(−ε, ε))⊗C2⊗C2, D×; 1⊗
γ3 ⊗ γ3) represents the product of ι̃! and [R2].

Proof. Throughout this proof we will use D = V ∗D×V and we suppress the use of
the unitary U in Proposition 7.2.

We need to check the three conditions of Kucerovsky. The connection condition
is automatic by Lemma 4.15 and Lemma 5.2.

In the notation of Definition 4.6 setW = C∞c (S1× (−ε, ε))⊗C2⊗C2, this is dense
and preserved by both (µ1i+ S̃)−1 and (µi+D)−1. Since D is defined on W , this
proves that the resolvent of S̃ is compatible with D.

Finally we consider the positivity condition. Using symmetry of S̃ and D we find
that we want to prove that

〈ψ, ((S̃ ⊗ 1)D +D(S̃ ⊗ 1))ψ〉 ≥ C〈ψ, ψ〉,

holds on C∞c (S1×(−ε, ε))⊗C2⊗C2 for some C ∈ R. Using the (anti) commutation
properties of the γ-matrices, we find that

〈ψ, ((S̃ ⊗ 1)D +D(S̃ ⊗ 1))ψ〉 = 〈ψ, (2f(s)2 ⊗ 1⊗ 1 +−if ′(s)⊗ γ2γ3 ⊗ γ1)ψ〉,
= 〈ψ, (2f(s)2 ⊗ 1⊗ 1 + f ′(s)⊗ γ1 ⊗ γ1)ψ〉,
= 〈ψ, f(s)2ψ〉+ 〈ψ, (f(s)2 ⊗ 1⊗ 1 + f ′(s)⊗ γ1 ⊗ γ1)ψ〉,
≥ 〈ψ, ψ〉+ 〈ψ, (f(s)2 − f ′(s))ψ〉,
= 〈ψ, ψ〉 − α2〈ψ, ψ〉,

so we may choose C = 1− α2.

All three conditions of Kucerovsky are satisfied, so (L2, D×) indeed represents the
product of ι̃! and [R2].

7.5 The Kasparov Product of S1 and the Index Class

We will now verify that the cycle (L2(S1× (−ε, ε))⊗C2⊗C2, D×; 1⊗γ3⊗γ3) also

represents the product of [̃S1] and 1, again by applying Kucerovsky’s criterion.
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Before we do so, let us recap the domains of (essential) self-adjointness of our
operators. Recall that we can write

D× = γ3 ⊗ T + iγ2∂θ ⊗
1

1 + s

as operator on L2(S1,C2)⊗L2((−ε, ε),C2). By Corollary 7.12D× is essentially self-
adjoint on the domain dom(iγ2∂θ)⊗alg dom(T ). Since T is essentially self-adjoint
with domain C∞c ((−ε, ε),C2), according to Proposition 6.2, and iγ2∂θ is essentially
self-adjoint on C∞(S1,C2), Corollary 7.13 implies that D× is also essentially self-
adjoint on C∞(S1,C2)⊗algC∞c ((−ε, ε),C2).

Proposition 7.19. The KK0(C(S1),C) cycle (L2(S1×(−ε, ε))⊗C2⊗C2, D×; 1⊗
γ3 ⊗ γ3) represents the product of [S1] and 1.

Proof. We will first check the connection condition. In accordance to the notation
of Theorem 4.8 and to avoid confusion between T and Tξ we will write D2 for the
operator T of the index class. So we have

D1 = iγ2∂θ,

D2 = iγ1∂s + γ2f(s),

D× =

(
D1 ⊗

1

1 + s

)
+ (γ3 ⊗D2).

We will verify that the graded commutator[(
D× 0
0 D2

)
,

(
0 Tξ
T ∗ξ 0

)]
is bounded on (C∞(S1,C2)⊗algC∞c ((−ε, ε),C2))⊕C∞c ((−ε, ε),C2) for ξ ∈ C∞(S1,C2).

Let ξ ∈ C∞(S1,C2) and ψ ∈ C∞c ((−ε, ε),C2), then

(D×Tξ − (−1)∂ξTξD2)ψ = D×(ξ ⊗ ψ)− (−1)∂ξξ ⊗D2ψ,

= D1ξ ⊗
1

1 + s
ψ + (−1)∂ξξ ⊗D2ψ − (−1)∂ξξ ⊗D2ψ,

= D1ξ ⊗
1

1 + s
ψ.

The operator norm of D×Tξ − (−1)∂ξTξD2 is then bounded by 1
1−ε ||D1ξ||.

Now for the other component, let again ξ, φ ∈ C∞(S1,C2) and ψ ∈ C∞c ((−ε, ε),C2).
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Then

(T ∗ξD× − (−1)∂ξD2T
∗
ξ )(φ⊗ ψ) = T ∗ξ (D1φ⊗

1

1 + s
ψ + γ3φ⊗D2ψ)

− (−1)∂ξD2(〈ξ, φ〉L2ψ),

= 〈ξ,D1φ〉L2

1

1 + s
ψ + 〈ξ, γ3φ〉L2D2ψ

− (−1)∂ξ〈ξ, φ〉L2D2ψ,

= 〈D1ξ, φ〉L2

1

1 + s
ψ.

Hence the operator norm of T ∗ξD× − (−1)∂ξD2T
∗
ξ is also bounded by 1

1−ε ||D1ξ||.

Putting this together we find that the connection condition is satisfied, since it is
satisfied on a core.

Next up is the compatibility condition. We use the same strategy as in Proposition
7.18 and choose W = C∞(S1,C2)⊗algC∞c ((−ε, ε),C2). Since both resolvents pre-
serve smoothness and D× is defined on the tensor product of the smooth functions
this shows compatibility.

Finally we want to show the positivity condition. Again we proceed similarly to
Proposition 7.18 and show that

〈φ⊗ ψ, ((D1 ⊗ 1)D× +D×(D1 ⊗ 1))(φ⊗ ψ)〉 ≥ C〈φ⊗ ψ, φ⊗ ψ〉

Since D1 ⊗ 1 anti-commutes with γ3 ⊗ D2 this term drops out, while D1 ⊗ 1
commutes with D1 ⊗ 1

1+s
to give

〈φ⊗ ψ, ((D1 ⊗ 1)D× +D×(D1 ⊗ 1))(φ⊗ ψ)〉 = 2〈φ⊗ ψ,D2
1φ⊗

1

1 + s
ψ〉,

= 2〈D1φ,D1φ〉〈ψ,
1

1 + s
ψ〉,

≥ 2

1− ε
||D1φ||2||ψ||2 ≥ 0.

Thus we have verified all the conditions in Theorem 4.8, so our product cycle
represents the product of [S1] and 1.

Corollary 7.20. At the level of KK-classes we have [̃S1] = ι̃! ⊗C0(R2) [R2].
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8 Discussion

In this thesis we investigated the shriek class corresponding to the embedding
ι : S1 ↪→ R2. While this embedding is probably the simplest non-trivial exam-

ple, it led to interesting results. We have proven that [̃S1] ⊗ 1 = ι̃! ⊗ [R2] using
Kucerovsky’s criterion and constructed an explicit unbounded representative for
this product. Essential for this was the construction of an index class that repre-
sents 1 ∈ KK0(C,C). This allowed us to reduce the “large” object ι̃!⊗ [R2] to the

“small” object [̃S1].

During our analysis of the various KK-classes, we made several choices. Most
obviously the choice S = α tan(αs). This choice for tan(x) is motivated in Section
6.1 with the argument that it allows us to solve the differential equation for the
integrating factor. However, we would like to state the following conjecture.

Conjecture 1. For any f : (−ε, ε)→ R that tends to ±∞ at ±ε “quickly enough”,
(L2((−ε, ε),C2), T ) is an unbounded representative for 1 ∈ KK0(C,C).

A more subtle, and perhaps more interesting, choice is our definition of E as
functions on S1 × (−ε, ε) rather than functions on S1 × R. It is the finite length
of the interval (−ε, ε) that disqualifies the use of the work in [KL13], as discussed
in Remark 7.6.

It might be interesting to investigate in detail what happens if we take our fibres as
R instead of (−ε, ε). This would allow us to use the function x rather then tan(x)
for S, which would make T0 very similar to (a combination of) ladder operators
for the quantum mechanical oscillator. However, since we need the fibre to map
to a (−ε, ε)-neighbourhood of S1 ⊂ R2 we would need to introduce measures into
the various Hilbert spaces and unitaries in Section 7.1.

The presence of these measures might stop us from applying the results of [KL13],
since they would effectively “squash” x into a function that tends to infinity after
a finite distance. This makes us not hopeful that this approach will yield simpler
results.

There is a noticeable difference with the result obtained in [KS16] for submersions,
since the “factorization” of Dirac operators that we find contains a rather non-
trivial term corresponding to the Index class, or unit in KK0(C,C). Especially
when generalizing to immersions with codimension greater than 1, careful analysis
is needed to properly identify these terms.

The eventual goal of this research project is to find an unbounded representative
of the shriek class of an arbitrary immersion. A first step towards this would
be to find an unbounded representative for the shriek class of any codimension
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1 embedding. Specifically an immediate next step could be to investigate the
embedding S2 ↪→ R3, since this is a nice computable setting with a very similar
flavour as the example we computed in this thesis.

The example S2 ↪→ R3 would also be interesting since we expect an obstruction
corresponding to the curvature of the immersed manifold to appear in the factor-
ization of the Dirac operator, similar to [KS16].

After this example we might work on general codimension 1 embeddings, using
for example the formulas in [Bär96] which relate Dirac operators on hypersurfaces
to the Dirac operator on their ambient manifold. The main ingredients that need
to be generalized for this application is the definition of the inner product on
E = C0(S1× (−ε, ε)), where the factor 1

r
probably should be replaced by the mean

curvature of the embedding, and the connection on E , which should be modified
to remain metric for the new inner product.

Initially it might be useful to restrict to compactly embedded manifolds, since
then we can always find an ε > 0 such that an ε-neighbourhood of the 0-section
is diffeomorphic to a neighbourhood of the embedded manifold where the mean
curvature of the embedding remains bounded. This allows S to be independent of
the point on the embedded manifold, we used this, for example, in Corollary 7.12.
Boundedness of the curvature term plays an important role in various parts of this
thesis, usually in the guise of 1

1+s
being bounded above and below on (−ε, ε).

When this is accomplished we can try to consider general embeddings, central is-
sues here are that we need a K-orientation as in [CS84] which makes our shriek
module (E , S) higher dimensional. While E can likely still be modelled after the
normal bundle, the action of S on this normal bundle merits some thought, al-
though we can use [CS84] for inspiration, similar to what we did in Section 5.2.

Finally we would like to treat arbitrary immersions. While this likely requires
some more work, it should not be hard since most constructions we use are local
rather than global.
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