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Abstract

We investigate the metric nature of spectral triples in two ways.

Given an oriented Riemannian embedding ı : X ↪→ Y of codimension 1 we construct a
family of unbounded KK-cycles ıε! , each of which represents the shriek class of ı in KK-
theory. These unbounded KK-cycles are further equipped with connections, allowing
for the explicit computation of the products of ıε! with the spectral triple of Y at the
unbounded level. In the limit ε → 0 the product of these unbounded KK-cycles with
the canonical spectral triple for Y admits an asymptotic expansion. The divergent part
of this expansion is known and universal, the constant term in the expansion gives the
canonical spectral triple for X. Furthermore, the curvature of these unbounded KK-
cycles converges to the square of the mean curvature of X in Y as ε→ 0.

We de�ne a random matrix ensemble for the Dirac operator on the (0, 1) fuzzy geom-
etry incorporating both the geometric and fermionic aspects of the spectral action. This
yields a unitarily invariant, single-matrix multi-trace model. We generalize Coulomb-gas
techniques for �nding the spectral density of single-trace models to multi-trace models
and apply these to our model of a fermionic fuzzy geometry. The resulting Fredholm in-
tegral equation for the spectral density is analyzed numerically and the e�ect of various
parameters on the spectral density is investigated.

Keywords: noncommutative geometry, spectral triples, C∗-correspondences, un-
bounded KK-theory, Riemannian immersions, random matrix theory, potential theory,
fuzzy geometry, spectral density, Dirac ensembles.
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Lay Summary

Descriptions of quantum mechanics often use matrices. These are square arrays of
numbers that can be added, subtracted and multiplied similar to normal numbers with
one major di�erence: if A and B are matrices A ·B and B ·A may give di�erent results.
In technical terms this is called noncommutativity.

On the other hand we have general relativity, in which space and time are described
using geometry. The theory of noncommutative geometry describes geometry using matri-
ces (or their in�nite dimensional generalizations). This makes noncommutative geometry
a natural language to try and unite the quantum mechanical with the world of general
relativity. In this thesis we explore two aspects of noncommutative geometry.

In the �rst part of this thesis we contribute to one of the open questions in noncom-
mutative geometry: How to describe maps between geometries? For these maps you can
think of a map in an atlas, which describes one geometry (the world) as a part of another
(the page). We construct a description in noncommutative geometry language of maps
that come from hypersurfaces. An example of a hypersurface is the shell of a ball in 3D
space.

The second part of the thesis concerns a separate project where we consider a speci�c
class of noncommutative geometries, called the (0, 1) fuzzy geometries. We are interested
in this class of geometries since they provide a toy model of quantum gravity, where
reality is a superposition of many di�erent geometries of this (0, 1) type.

Fuzzy geometries have many useful qualities for us. They have, for example, a mini-
mum resolution built in. If you look very closely, details become fuzzy. Such a minimum
scale, called the Planck length, is predicted by the combination of general relativity and
quantum mechanics.

We focus on the fuzzy geometries of type (0, 1) since for this type the situation further
simpli�es to allow us to �nd exact solutions. The main addition we make to this model
of quantum gravity on fuzzy geometries is the inclusion of particles living on space time.
We compute in particular how these particles a�ect the superposition of geometries.
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Chapter 1

Introduction and Preliminaries

Let us start with a brief message to the reader. The goal of this thesis for me is two-fold.
First of all it is intended as my Ph.D. thesis, detailing most of the work I have done over
the past four years and as such form a small addition to the wide world of mathematics.
Secondly I hope this can be a document that future graduate students can use to get a
running start on similar projects.

The work presented in this thesis all falls under the umbrella of noncommutative
geometry, but can be split into two main projects. The �rst project concerns the in-
terplay between noncommutative geometry and di�erential geometry. We construct a
representation of smooth embeddings of manifolds in the language of spectral triples.
This represents a new and useful example in the search for a theory of maps in noncom-
mutative geometry.

The second project takes on a very di�erent �avour. We consider a Dirac ensemble
based on the class of (0, 1) fuzzy geometries and spectral density of the random Dirac
operator of this ensemble. To accomplish this we �rst generalize a suite of tools for
single-trace random matrix models to interacting random matrix models in Chapter 3.
This is followed by Chapter 4, where we apply these techniques to a new class of Dirac
ensembles incorporating the fermionic action.

More detailed introductions are given at the start of the respective chapters. The
common thread in both these projects is the focus on the metric nature of spectral
triples. The connection between the projects lies largely in future work that will be
based on the combination between di�erential geometry and fuzzy Dirac ensembles [55].

First, in Sections 1.1 and 1.2, we will give very brief introductions to the parts of
noncommutative geometry and random matrix theory that are relevant to our purposes.
The goal of these sections is not to give a full and comprehensive introduction to the
hypothetical graduate student of all the required material. The goal is to serve as a
reminder of the terminology or as a check of assumed background knowledge. I have tried
to include references to su�cient excellent source material that gives proper introductions
to all these concepts.
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2 Chapter 1. Introduction and Preliminaries

1.1 Noncommutative geometry preliminaries

The distant ancestor of noncommutative geometry is one of my personally favourite
theorems:

Theorem (Gelfand duality). If A is a unital commutative C∗-algebra then A = C(Â)

where Â is the compact Hausdor� space of characters φ : A→ C with the weak-∗ topology.
Moreover, if X is a compact Hausdor� space, C(X) is a unital commutative C∗-algebra

and X is homeomorphic to Ĉ(X).

Proof. See, for example, [52, Ch. 2].

To paraphrase, we can study (compact Hausdor�) topological spaces by studying the
associated commutative C∗-algebras.

In certain situations one comes across �degenerate� or �badly behaved� topological
spaces that do, in some sense, correspond to noncommutative C∗-algebras. See [11, 16]
for the example of this that formed the inspiration for Chapter 2. More generally, a lot
of properties of topological spaces can be formulated for their associated commutative
algebras in a way that also makes sense for noncommutative algebras. For example,
compactness corresponds to unitality. These ideas give rise to what one might call non-
commutative topology.

But, as we will stress again in Chapter 2, we want to do geometry, not topology. This
is where spectral triples come in. The key here is Connes' reconstruction theorem [15],
which provides an analogue of Gelfand duality in a geometric setting. It, very roughly,
says that a particularly type of Riemannian manifolds can be reconstructed from the
algebra of smooth functions, its Dirac operator, and the interaction between the Dirac
operator and the smooth functions.

This gives rise to the notion of a spectral triple, consisting of an algebra A, a Dirac
operator D and a Hilbert space H upon which both A and D act. Studying such spec-
tral triples for noncommutative A (or rather not-necessarily-commutative) yields the by
now widely developed area of noncommutative geometry. We will provide a very bare
bones introduction here, for a more in-depth introduction see for example [12, 29] or [61]
for a good didactic introduction that also explains the connections of noncommutative
geometry to physics.

We assume that all C∗-algebras appearing in this section are separable.

1.1.1 Spectral triples

Spectral triples are the basic ingredient of noncommutative geometry and combine al-
gebraic and analytic structure. Their algebraic structure will play a crucial role in the
analysis of the �nite dimensional fuzzy geometries in Chapter 4 while their analytic
structure, primarily through unbounded KK-theory, features mostly in Chapter 2.

De�nition 1.1.1. A spectral triple

(A, H,D)



1.1. Noncommutative geometry preliminaries 3

consists of a ∗-algebra A realized as a subalgebra of B(H) for the Hilbert space H, and
a possibly unbounded self-adjoint operator D : Dom(D) ⊆ H → H. These data must
satisfy the following additional assumptions

� A preserves the domain of D and [D, a] extends to a bounded operator for all a ∈ A,

� a(D + i)−1 is compact for all a ∈ A.

The closure A = A (in operator norm) is the C∗-algebra for this spectral triple.
A graded or even spectral triple has the additional datum of a Z/2Z grading γ : H →

H such that D is an odd operator for γ and the representation of A on H is graded as
well (where A is possibly trivially graded).

There is another subtype that deserves a de�nition of its own because of its additional
complexity and central role in Chapter 4.

De�nition 1.1.2. A real spectral triple of KO-dimension s is a possibly graded spectral
triple with additionally an antilinear isometry J : H → H such that

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ

where the signs ε, ε′, ε′′ are determined by Table 1.1. If the spectral triple is not graded
the third condition is void.

For a real spectral triple we de�ne an additional representation of the opposite algebra
Ao on H by

aoψ = Ja∗J−1ψ = εJa∗Jψ

for a ∈ A and ψ ∈ H. This opposite representation, which we will usually call the right
action of A, is required to satisfy

� [a, bo] = 0 for a, b ∈ A,

� [[D, a], bo] = 0 for a, b ∈ A (the order one condition).

Remark 1.1.3. The term order one condition is used because in examples it requires D
to be an order one di�erential operator. This is seen explicitly in Lemma 4.1.2 where
the real structure is used to limit the space of Dirac operators. The condition is also
motivated by Example 1.1.4 where the Dirac operator is, in fact, an order one di�erential
operator.

One of the main examples of spectral triples are the canonical spectral triples asso-
ciated to spinc Riemannian manifolds, which feature in Connes' reconstruction theorem.
We will see other, �nite dimensional, examples in Chapter 4. The below example is a
very brief rundown of this important class of spectral triples, more background can be
found in [61, Ch. 4] or [12].

Example 1.1.4. Let M be an oriented Riemannian spinc manifold with spinor bundle1

Σ. Let Cl(TM) be the Cli�ord algebra bundle over M generated by the tangent bundle

1We take the existence of this spinor bundle as the de�nition of a spinc manifold.



4 Chapter 1. Introduction and Preliminaries

s mod 8 0 1 2 3 4 5 6 7
ε + + − − − − + +
ε′ + − + + + − + +
ε′′ + + − + + + − +

Table 1.1: The usual choices of the signs associated to a KO dimension s in noncommu-
tative geometry literature. For a real structure J the signs are J2 = ε, Jγi = ε′γiJ for
γi generators of the Cli�ord algebra, and Jγ = ε′′γJ for γ the (possibly trivial) grading
operator.

and the Riemannian structure. This means that Σ → M is a vector bundle such that,
if dim(M) is even, there is an isomorphism c : Cl(TM) → End(Σ). If dim(M) is odd,
instead c : Cl0(TM)→ End(Σ) is an isomorphism.

In this setting one can always construct a lift of the Levi-Civita connection ∇M to the
spinor bundle Σ, by which we mean a metric connection ∇Σ on Σ such that we have the
Leibniz rule

∇Σ
A (c(B)ψ) = c

(
∇M
A (B)

)
ψ + c(B)∇Σ

A(ψ),

for A, B vector �elds on M . We can then de�ne a Dirac operator by

DM = ic ◦ ] ◦ ∇Σ

where ] : Ω1
dR(M)→ TM is the map induced by the Riemannian metric.

Let us describe this in local coordinates over some open subset U to make it more
concrete. Say we have local coordinates {xµ}, also choose a local orthonormal frame
{ei}. We �rst express the Levi-Civita connection using Christo�el symbols relative to this
frame. Explicitly

∇M
∂µ(ej) = Γ̃kµjek.

Note that these are not the usual Christo�el symbols and have di�erent symmetry prop-
erties, notably since they combine coordinate and frame indices.

Over U we can further �nd a basis for the spinor bundle such that c(ei) = γi for a
�xed set of γ-matrices (i.e. a set of matrices satisfying γiγj + γjγi = 2δij).

It is then a cumbersome but straightforward check that

∇Σ
∂µ(ψ) =

(
∂µ −

1

4

∑
a,b

Γ̃bµaγaγb

)
ψ

de�nes a spin connection on Σ. The Dirac operator in these coordinates is then given by

DMψ =
∑
µ

iγµ

(
∂µ −

1

4

∑
a,b

Γ̃bµaγaγb

)
ψ

where γµ =
∑

i a
i
µγi if ∂µ =

∑
i a

i
µei.

At the end we can combine all this data into the spectral triple(
C∞(M), L2(Σ), DM

)
.
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We call this the canonical spectral triple of M .
If dim(M) is even Σ comes with a grading for which c(TM) is odd, making this a

graded spectral triple. In case there exists a global charge conjugation J : Σ → Σ the
manifold M is called spin and this J makes the canonical spectral triple a real spectral
triple.

1.1.2 The external product of spectral triples

The construction in noncommutative geometry parallel to the Cartesian product in dif-
ferential geometry is that of the external product (to be compared to the internal product
of the next section).

We are interested in the external product for two reasons. The �rst is its appearance
in Chapter 4, where the Dirac ensemble we are interested in is formed as an external
product. Its use there is similar to the construction of almost commutative geometries,
which form the basis for the noncommutative geometry approach to particle physics.
The papers [13, 10] are among the foundations of this, see also [61] for a good didactic
introduction as well as a more complete list of references.

The second reason, with relevance towards Chapter 2, is that the external product
was the motivation for the introduction of unbounded KK-theory in [1]. As such it sets
the stage for Section 1.1.3 and it provides intuition for the internal product, Section 1.1.4,
as well.

De�nition 1.1.5. Given two graded spectral triples (A1, H1, D1; γ1), (A2, H2, D2; γ2) the
external product is the spectral triple2

(A1 ⊗A2, H1 ⊗H2, D1 ⊗ 1 + γ1 ⊗D2; γ1 ⊗ γ2) .

The product of two ungraded spectral triples (A1, H1, D1), (A2, H2, D2) is given by the
graded spectral triple(

A1 ⊗A2, H1 ⊗H2 ⊗ C2, D1 ⊗ 1⊗ σ1 +D2 ⊗ 1⊗ σ2; 1⊗ 1⊗ σ3

)
where σ1, σ2, σ3 are the Pauli matrices (see Example 1.1.7).

Taking the real structure into account complicates matters, since the obvious choice
of product real structure J = J1 ⊗ J2 may fail to have a well-de�ned KO-dimension in
the sense of Table 1.1. This can be ameliorated by noting that there are choices involved
in the usual sign table of KO-dimensions. In particular, if J is a real structure, so is
γJ and this di�erence �ips the ε′ sign. Taking consistent graded tensor products then
breaks the choices for the KO-dimension signs into two families [26, 18].

A concept closely tied to the external product and that features in both the di�erential
geometric spectral triples of Chapter 2 and the fuzzy geometry spectral triples of Chapter
4 is that of a spinor space. We will introduce these and some associated terminology here,
good further references are [61, 4].

2We note that there are some details to be considered when it comes to the tensor product of C∗-
algebras A1 ⊗ A2 and the choice of smooth elements. In our applications at least one of the factors
will be �nite dimensional which voids these concerns. In general we take the tensor product in the
representation on H1 ⊗H2.
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De�nition 1.1.6. The Cli�ord algebra Cln is the complex algebra generated by the or-
dered set of generator {e1, . . . , en} with the relations

e2
i = 1, for i = 1, . . . , n, eiej = −ejei for i 6= j

The Cli�ord algebras are Z/2Z graded by declaring the generators to be odd.
The element γ = ime1 · . . . · en, m = bn

2
c, is called the grading or chirality element.

Example 1.1.7. The Pauli matrices

σx = σ1 =

(
0 1
1 0

)
, σy = σ2 =

(
0 −i
i 0

)
, σz = σ3 =

(
1 0
0 −1

)
,

are a representation of Cl3 on C2.

Example 1.1.8. σ1 and σ2 are a representation of Cl2 on C2 and σ3 = −iσ1σ2 is a
grading operator for this representation.

De�nition 1.1.9. We de�ne a spinor space of signature (p, q) as a complex vector space
V with an irreducible representation of the Cli�ord algebra Clp+q, together with an anti-
linear map J called the real structure or charge conjugation. We require that for Cli�ord
generators {ei},

J2 = ε, Jei = ε′eiJ, Jγ = ε′′γJ

with the signs ε, ε′, ε′′ for KO-dimension q − p in Table 1.1.

This leads us to the �nal stop of this section, the doubling and halving processes. It
is in many cases easier to work with graded spectral triples (and graded unbounded KK-
cycles) than with ungraded ones. This preference for graded triples and cycles originates
with spinor spaces, where for even n there is a unique irreducible representation while for
odd n there are two irreducible representations. This leads to di�erences between spinor
bundles over even and odd dimensional manifolds (see Example 1.1.4) and to a lot of
the n even/n odd bookkeeping in Chapter 2. Ideally this could all be avoided by taking
careful graded tensor products and adjusting the usual choice of KO-signs in the spirit
of [26].

De�nition 1.1.10. Let (A, H,D) be an ungraded spectral triple. The doubling of (A, H,D)
is the external product with (Cl1,C2, 0;σ3), i.e. the graded spectral triple(

A⊗ Cl1, H ⊗ C2, D ⊗ σ2; 1⊗ σ3

)
with C∗-algebra A⊗ Cl1.

Conversely, if (A ⊗ Cl1, H,D; γ) is a graded spectral triple with A unital such that
(1⊗ e)D = −D(1⊗ e), then it is unitarily equivalent to the doubling of a spectral triple
with C∗-algebra A.

The above de�nition becomes more interesting in the context of unbounded KK-
cycles, where it implements unbounded representatives for the higher KK groups, see
[62, App. A] and [59].
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1.1.3 Hilbert bimodules and unbounded KK-cycles

We will now give a brief introduction, or rather a series of de�nitions, of Hilbert bimodules
leading to the main de�nition of an unbounded KK-cycle. As the name suggests, these
are representatives for classes in KK-theory. This is however not the view we will take
in this thesis, instead we will interpret them as maps between spectral triples. This
approach is in particular inspired by the Kasparov, or internal, product.

For an in-depth introduction to Hilbert (bi-)modules, see [44]. For an introduction
to KK-theory, which we omit in this text for the reasons outlined in the introduction of
Chapter 2, see [12, 8] or [34] for a more introductory text.

De�nition 1.1.11. Let B be a C∗-algebra. A Hilbert module over B is a vector space E
with a right B-representation and a B-valued sesquilinear form 〈•, •〉. These must satisfy

� 〈ψ, φ · b〉 = 〈ψ, φ〉b,

� 〈ψ, φ〉 = 〈φ, ψ〉∗,

� 〈ψ, ψ〉 ≥ 0 with equality only if ψ = 0,

for all ψ, φ ∈ E and b ∈ B. Finally we require that E is complete in the norm ‖ψ‖2 =
‖〈ψ, ψ〉‖B.

If E and B are (possibly trivially) graded, all these structures must be compatible with
the grading.

Example 1.1.12. Examples of Hilbert modules are

1. A Hilbert space H is a Hilbert module over C.

2. A vector bundle E →M with a Riemannian inner product is a Hilbert module over
C(M).

3. A C∗-algebra A is a Hilbert module over itself with inner product 〈a, b〉 = a∗b.

With the second example in mind, Hilbert modules can be thought of as vector bundles
over the noncommutative space represented by the C∗-algebra B. Much of Hilbert space
theory carries over the Hilbert module setting. With one major extra regularity condition
for unbounded operators due to complexities with orthogonal complements.

De�nition 1.1.13. Let E be a Hilbert module over a C∗-algebra B. A map T : E → E
is adjointable if there exists a T ∗ : E → E such that 〈T ∗ψ, φ〉 = 〈ψ, Tφ〉 for all ψ, φ ∈ E.
The space of adjointable maps is then predictably

End∗B(E) = {T : E → E |T is adjointable}.

This de�nition may look odd at �rst glance, when compared to the de�nition of
bounded maps on a Hilbert space. In Hilbert spaces bounded linear maps are automati-
cally adjointable, but the converse also holds, adjointable maps are automatically linear
and bounded. This converse statement continues to hold for Hilbert modules, while the
�rst one fails [44, p. 8].

Besides the space of operators we need to know what compact operators on a Hilbert
module are.
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De�nition 1.1.14. Let E be a Hilbert module over a C∗-algebra B. The space of compact
maps K(E) ⊂ End∗B(E) is the (operator norm) closure of the linear space of the rank one
operators

|ψ〉〈φ| : E → E
ξ 7→ ψ〈φ, ξ〉.

Example 1.1.15. Consider A as a Hilbert module over A, then the operator ma : A→ A,
b 7→ ab is adjointable and compact. The adjoint map is given by m∗a = ma∗, indeed

〈b,mac〉 = b∗ac = (a∗b)∗c = 〈ma∗b, c〉.

If A is unital, ma = |1〉〈a∗| and thus compact. If A is not unital observe that the
operator norm of ma is ‖a‖ (by submultiplicativity and the C∗ identity). Then if {µn} is
an approximate unit for A, we have ma −mµna = ma−µna and a− µna converges to zero
in operator norm. Since mµna = |µn〉〈a∗| we get that ma is compact in this case as well.

Now that we have the basic notions of maps on a Hilbert module we can introduce
the two key components of an unbounded KK-cycle.

De�nition 1.1.16. Let A, B be C∗-algebras. A Hilbert A-B bimodule is a Hilbert B-
module E with an algebra homomorphism ρ : A → End∗B(E). This will occasionally be
written as AEB and the representation ρ is usually suppressed in the notation.

If A and E are equipped with (possibly trivial) Z/2Z-gradings the representation of A
on E must be compatible with these gradings.

De�nition 1.1.17. Let E be a Hilbert module over a C∗-algebra B. An unbounded
operator on E is given by a domain Dom(D), dense in E, and a map D : Dom(D)→ E
such that it has a densely de�ned adjoint D∗ : Dom(D∗) → E. This means that for
ψ ∈ Dom(D∗) and φ ∈ Dom(D) one has

〈D∗ψ, φ〉 = 〈ψ,Dφ〉.

An unbounded operator is regular if 1 +D∗D has dense range.

Other adjectives for unbounded operators, in particular closed, closeable, symmetric,
and self-adjoint have the same meaning as in the Hilbert space setting. The new keyword
here is regular, on a Hilbert space regularity is automatic but for Hilbert modules it is
an essential well-behavedness property (see [44, Ch. 9] for more details).

This has, �nally, put us in the position where we can de�ne the principal object of
Chapter 2, the unbounded KK-cycle. These unbounded KK-cycles were invented in
[1] to simplify computations of the external product of KK-classes to, essentially, the
external product we saw in Section 1.1.2.

De�nition 1.1.18. Let A,B be C∗-algebras. An unbounded A-B KK-cycle consists of
a Z/2Z-graded Hilbert bimodule AEB, a dense subalgebra A ⊂ A, and an odd self-adjoint
regular operator D : Dom(D)→ E such that
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� A preserves the domain of D and [D, a] extends to an element of End∗B(E) for all
a ∈ A,

� a(D + i)−1 ∈ K(E) for all a ∈ A.

A spectral triple (A, H,D) is an example of an unbounded A-C KK-cycle, as can
easily be concluded by comparing this de�nition to that of a spectral triple, De�nition
1.1.1. This is the crucial fact that encourages us to look at the unbounded picture of
KK-theory as a source of inspiration for maps between spectral triples. In particular
there is the Kasparov product, which tells us that there is a notion of composition of
unbounded A-B and B-C KK-cycles to an unbounded A-C KK-cycle.

1.1.4 The Kasparov product and connections

The Kasparov, or internal, product is an operation in KK-theory that we will interpret
as a composition for unbounded KK-cycles. To do this we will make use of connections
and one-forms corresponding to an unbounded KK-cycle. We will make use of pre-C∗-
algebras and pre-Hilbert modules in order to sidestep a lot of the analytical subtleties
in this construction. We can get away with this since our application is entirely based
on smooth manifolds with (su�ciently) elliptic di�erential operators that allow us to use
the smooth functions as our pre-C∗-algebras.

For a more complete introduction to connections in noncommutative geometry one
can see [12]. For the background of our particular construction see [37, 36, 49] and in
particular [47]. The speci�cs surrounding curvature in this setting can be found in [50].

We will begin with some de�nitions.

De�nition 1.1.19. A pre-C∗-algebra A satis�es the same conditions as a C∗-algebra
except that it need not be complete in the norm.

A pre-Hilbert B module, for a pre-C∗-algebra B, satis�es the same conditions as a
Hilbert B module, except that it need not be complete in the norm. Similarly for pre-
Hilbert bimodules.

The idea behind working with pre-C∗-algebras and pre-Hilbert (bi)modules is that
they correspond to the smooth functions (sections) inside the continuous functions (sec-
tions). This will allow us to talk about connections in a way that prepares us nicely
for Chapter 2. Even though there we do not explicitly mention pre-C∗-algebras and
pre-Hilbert bimodules, it is often in the same spirit.

We can now introduce the composition of Hilbert bimodules with the following result,
masquerading as a de�nition. That this indeed de�nes a (pre-)Hilbert A-C bimodule is
not obvious. In particular de�niteness of the inner product requires some work, see [44,
Prop. 4.5].

De�nition 1.1.20. Let A,B,C be pre-C∗-algebras and let E be a pre-Hilbert A-B bi-
module and F a pre-Hilbert B-C bimodule. Then the balanced tensor product of E and
F , denoted E ⊗B F is the quotient of the (graded, if applicable) algebraic tensor product

E ⊗B,alg F = E ⊗alg F/ ∼B
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where ∼B is the subspace generated by elements of the form

ψ · b⊗ φ− ψ ⊗ b · φ.

This balanced tensor product comes with a pre-Hilbert A-C bimodule structure with the
inner product

〈ψ ⊗ φ, ψ′ ⊗ φ′〉 = 〈φ, 〈ψ, ψ′〉 · φ′〉.
If E and F are Hilbert modules, E ⊗B F can be completed in the norm associated to

its inner product to produce a Hilbert A-C bimodule.

The next point for composition of unbounded KK-cycles is the operator on the
balanced tensor product of the Hilbert bimodules. Suppose we have two unbounded
KK-cycles, (AEB, D1), (BFC , D2), the Hilbert bimodule of the composition is given by

A(E ⊗B F)C and the operator should be at least modelled on D1⊗ 1 + 1⊗D2. The main
issue with de�ning this operator is that D2 need not commute with the B action so that
1⊗D2 is not well de�ned on the balanced tensor product.

To make sense of this operator we will introduce an additional piece of data on the �rst
factor, namely a connection. To avoid talking about domains we will phrase this in terms
of pre-Hilbert bimodules and pre-C∗-algebras. The operators involved are, however, still
unbounded.

De�nition 1.1.21. Let B be a pre-C∗-algebra with Z/2Z-grading operator γ, possibly
γ = 1, and de�ne

m :B ⊗B → B

b1 ⊗ b2 7→ b1γ(b2).

We de�ne the universal space of one forms as the B-bimodule Ω1
u(B) = kerm, which is

graded by −γ ⊗ γ.
The universal derivative is the map

δ :B → Ω1
u(B)

b 7→ 1⊗ b− γ(b)⊗ 1.

The space of universal two forms is Ω2
u(B) = Ω1

u(B) ⊗B Ω1
u(B) and the universal

derivative extends to the map

δ : Ω1
u(B)→ Ω2

u(B)

aδ(b) 7→ δ(a)⊗ δ(b).

De�nition 1.1.22. A universal connection for a pre-Hilbert B-module E with grading
operator γ is an odd linear map

∇ : E → E ⊗B Ω1
u(B)

such that
∇(ψ · b) = ∇(ψ) · b+ γ(ψ)⊗ δ(b).

If additionally
〈∇(γ(ψ)), φ〉 − 〈γ(ψ),∇(φ)〉 = δ(〈ψ, φ〉)

the connection is said to be metric.
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Lemma 1.1.23. Let B be a unital pre-C∗-algebra, and ω ∈ Ω1
u(B) odd, then

∇B
u :B → B ⊗B Ω1

u(B)

b 7→ 1⊗ δ(b) + 1⊗ ωb

de�nes a connection.

Proof. In our setting this is a straightforward algebraic exercise,

∇B
u (ab) = 1⊗ δ(ab) + 1⊗ ωab,

= 1⊗ δ(a)b+ 1⊗ γ(a)δ(b) + 1⊗ ωab,
= ∇B

u (a)b+ γ(a)⊗ δ(b).

The oddness condition on ω comes from the requirement that ∇ be odd.

With a connection we can de�ne the product operator, but we have to leave the realm
of universal forms for the represented forms.

De�nition 1.1.24. Let B,C be pre-C∗-algebras, F a pre-Hilbert B-C bimodule and
D2 : F → F an adjointable map3. Then

Ω1
D2

(B) := {a[D2, b] | a, b ∈ B},
Ω2
D2

(B) := {a[D2, b][D2, c] | a, b, c ∈ B}

which are subspaces of the adjointable operators on F .
Further de�ne

πD2 : Ω1
u(B)→ Ω1

D2
(B)

aδ(b) 7→ a[D2, b].

If E is a pre-Hilbert A-B bimodule with a universal connection ∇Eu the represented con-
nection is de�ned by

∇ED2
:= (1⊗ πD2) ◦ ∇Eu.

De�nition 1.1.25. Let E, F be graded unbounded A-B and B-C pre-Hilbert bimodules
respectively, with self-adjoint maps D1 : E → E and D2 : F → F . Furthermore assume
∇Eu is a universal metric connection on E. The product operator on E ⊗B F is de�ned
by

D1 ×∇E D2 = D1 ⊗ 1 + 1⊗∇E D2,

where
(1⊗∇E D2) (ψ ⊗ φ) := γ(ψ)⊗D2φ+∇ED2

(ψ)φ.

This is again a proposition masquerading as a de�nition. One should for example
check that the product operator on E ⊗B F is again self-adjoint. This corresponds to the
(unbounded) product operator on the Hilbert module completion being symmetric on its
domain. It is then a further question if this product operator has a self-adjoint extension
to the Hilbert module completion. These questions are tackled on a case-by-case basis
for our situation in Section 2.3 with smooth sections of spinor bundles playing the role
the pre-Hilbert modules.

3Since F is only a pre-Hilbert bimodule this does not imply that D2 is bounded.
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De�nition 1.1.26. Let E be a pre-Hilbert B module for a pre-C∗-algebra B with universal
connection ∇Eu. The universal curvature of this connection is de�ned to be the map from
E to E ⊗ Ω2

u(B) (
∇E
)2

u
=
(
1⊗∇Eu δ

)
◦ ∇Eu

and the represented curvature relative to a pre-Hilbert B-C bimodule F with D2 : F → F
is given by

πD2

((
∇E
)2
)

(ψ ⊗ φ) :=
((

(1⊗m) ◦ (1⊗ 1⊗ πD2) ◦ (1⊗∇ED2
δ) ◦ ∇Eu

)
(ψ)
)
φ.

where ψ ⊗ T ∈ E ⊗ Ω2
D2

(B) acts on F by φ 7→ ψ ⊗ Tφ.

This de�nition is not terribly enlightening beyond its similarity to ∇2 in regular
di�erential geometry, the following lemma gives some further reason this de�nition is
sensible by strengthening that link. A much more complete motivation for this de�nition
can be found in [50].

Lemma 1.1.27. For a connection ∇B
u as in Lemma 1.1.23 the universal curvature is

given by
(∇)2

u (a) = 1⊗ (δ(ω) + ω ⊗ ω) a

and the represented curvature relative to an operator D2 : F → F on a pre-Hilbert B-C
bimodule F is

πD2

((
∇A
)2
)

(a⊗ φ) =
(
(πD2 ⊗ πD2)(δ(ω)) + πD2(ω)2

)
aφ.

Proof. We compute the universal case �rst.

(1⊗∇Bu δ)(∇
B
u (b)) = (1⊗∇Bu δ)(1⊗ δ(b) + 1⊗ ωb),

= γ(1)⊗ δ2(b) +∇B
u (1)⊗ δ(b) + 1⊗ δ(ωb) +∇B

u (1)⊗ ωb,
= 1⊗ ω ⊗ δ(b) + 1⊗ (δ(ω)b+ γ(ω)δ(b)) + 1⊗ ω ⊗ ωb,
= 1⊗ ω ⊗ δ(b) + 1⊗ δ(ω)b− 1⊗ ωδ(b)) + 1⊗ ω ⊗ ωb,
= 1⊗ (δ(ω) + ω ⊗ ω)b.

Note that in the fourth line we used that ω is odd.
The analogous statement for the represented curvature follows from essentially the

same computation, keeping track of where the representation πD2 is introduced.

This concludes our brief and very narrow discussion of curvature for unbounded KK-
cycles. The last port of call for this section is a useful result from [47] that gives us
strong tools to check when the above (purely algebraic, in this incarnation) construction
actually works at an analytic level.

De�nition 1.1.28. A pair of operators D1, D2 on a graded Hilbert B-module E is weakly
graded commuting if

� for some C0, C1, C2 and ψ ∈ Dom([D1, D2]) we have

‖[D1, D2]ψ‖2 ≤ C0‖ψ‖2 + C1‖D1ψ‖2 + C2‖D2ψ‖2,
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� There is a core E for D2 such that (D1 + iλ)−1E ⊂ Dom([D1, D2]),

here we stress that the commutator is the graded commutator, so if both D1 and D2 are
odd [D1, D2] = D1D2 +D2D1.

For an weakly graded commuting pair we have the following theorem.

Theorem 1.1 (Thm. 2.6 [47]). If D1, D2 is a pair of weakly graded commuting self-
adjoint regular operators on a Hilbert B-module E, then

� D1 +D2 is self-adjoint and regular with domain Dom(D1) ∩Dom(D2).

� ‖ψ‖2 + ‖(D1 +D2)ψ‖2 ≤ C (‖ψ‖2 + ‖D1ψ‖2 + ‖D2ψ‖2)

This theorem is useful in the context of Kasparov products, or composition, of un-
bounded KK-cycles by giving a powerful criterion for the sum of D1 ⊗ 1 and 1⊗∇E D2

to be self-adjoint. The second criterion is useful in establishing that D1 ⊗ 1 + 1⊗∇E D2

has compact resolvents.

We will now give two, very simple, cases as example applications of De�nition 1.1.28.
Both these cases can be done by other means as well.

Lemma 1.1.29. Let (AEB, D1) and (BFC , 0) be unbounded KK-cycles. Then the product
cycle

(A (E ⊗B F)C , D1 ⊗ 1)

is an unbounded KK-cycle.

Proof. The pair D1 ⊗ 1, 0 is certainly a weakly graded commuting pair of self-adjoint
operators (D1⊗ 1 is self-adjoint by general theory, for example [58, Thm. VIII.33]). The
operator D1 ⊗ 1 has compact resolvents since 0 does, as this implies that F is �nitely
generated.

Lemma 1.1.30. Let (A(H1)C, D1) and (C(H2)C, D2) be unbounded KK-cycles. Then the
product cycle

(A (H1 ⊗H2)C, D1 ⊗ 1 + γ1 ⊗D2))

is an unbounded KK-cycle that moreover represents both the internal and external Kas-
parov product of the corresponding classes in KK-theory.

Proof. Since we are working with Hilbert spaces all operators are regular and D1 ⊗ 1
and γ1 ⊗ D2 are self-adjoint by general theory of self-adjoint operators. Moreover, the
algebraic tensor product Dom(D1)⊗algDom(D2) forms a core for γ1⊗D2 and A (graded)
commutes with γ1 ⊗D2. Finally D1 ⊗ 1 graded commutes with γ1 ⊗D2 so they form a
weakly commuting pair.

This covers exactly the assumptions of [47, Thm. 7.4] which implies that the product
cycle is indeed an unbounded KK-cycle that represents the Kasparov product.
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1.2 Random Matrix Preliminaries

Our introduction to random matrix theory will be as targeted as our introduction to
noncommutative geometry was, skipping many interesting sub-areas and perspectives.
Useful texts on random matrix theory are, for example, [25, 24, 22, 51]. The study of
random matrices was originated by Wigner in [64] to study the spectra of atoms. The
basic idea of random matrix theory is to choose a probability density on some space of
matrices and study the statistical properties, such as the expectation value for the largest
eigenvalue, of those matrices.

Our motivation for studying random matrix models can be found in more detail in
Chapter 4, in particular Section 4.1. The main idea is that we would like to study a
particular family of spectral triples, 0, 1-fuzzy geometries, with a random Dirac operator.
This Dirac operator can be parametrized by a single Hermitian matrix, thus a model
involving random Dirac operators becomes a random matrix model.

A prototypical example of random matrix models is the Gaussian Unitary Ensemble,
or GUE for short. This is the random matrix model de�ned by the probability density

1

ZN
e−N Tr(H2) dH

on the space of N × N Hermitian matrices HN . Here dH is the Lebesgue measure on
HN
∼= RN2

and ZN is a normalization constant. For the GUE the normalization ZN
can be computed explicitly, but usually the normalization factor is left as an abstract
quantity.

Let us introduce some terminology.

De�nition 1.2.1. A random matrix ensemble (or random matrix model) is a subsetM
of MN(R)n, MN(C)n or MN(H)n together with a probability density onM.

If the probability density is given by a formula of the form

1

Z
e−S(H) dH,

where dH is the Lebesgue measure on the appropriate power of R, the function S is called
the action of this ensemble.

If S(H) = Tr(V (H)) for a polynomial V this polynomial is called the potential of this
ensemble.

The GUE is one of the simplest matrix models, in particular it has three desirable
qualities.

� It is unitarily invariant, i.e. the density is invariant under H → UHU∗ for a unitary
matrix U .

� It is single matrix.

� It is single trace, meaning that the density is given by the action for a polynomial
potential V (x) (to be precise, for the GUE V (x) = x2).
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For such models many tools are available. There is even a rich theory if the potential
V (x) is such that e−Tr(V (H)) is not integrable, see in particular [24].

In this thesis we will be primarily concerned with a random matrix ensemble coming
from a toy model for quantum gravity for which this third property fails quite de�nitively.
First of all the action will not be single-trace, but will include products of traces. Secondly
there will be a term in S(H) that is not polynomial in H. Chapter 3 is entirely concerned
with generalizing tools from [22] to this new situation.

The rest of this section will be an introduction to one of the main tools for unitarily
invariant random matrix ensembles, Weyl's integration formula, followed by a discussion
of large-N asymptotics and the spectral density. As mentioned before, this ignores a
wealth of subjects that are hiding in the �eld of random matrix theory. For a slightly
broader introduction that is still close to the subjects covered in this thesis see [33]. For
a fuller introduction see the books cited at the start of this chapter.

1.2.1 Weyl's integration formula and spectral densities

One of the main tools available for single matrix, unitarily invariant random matrix
ensembles over the Hermitian matrices is diagonalization. Suppose we have a random
matrix ensemble given by some unitarily invariant action S over the Hermitian matrices.
Then S can be written in terms of the eigenvalues of H, as those are a complete set of
unitary invariants for a Hermitian matrix.

Let O : HN → R be any unitarily invariant function, then the expectation value of O
is given by

〈O〉 =
1

Z

∫
HN

O(H)e−S(H) dH =
1

Zev

∫
RN
Oev(~λ)e−Sev(~λ)

∏
i<j

|λi − λj|2 dN~λ (1.1)

where Oev and Sev are O and S expressed in terms of eigenvalues and Zev is a (di�erent)
normalization constant. This formula is easily proved by the change of coordinates HN

∼=
UN/(U

N
1 ) × RN given by diagonalization (see [22, Ch. 5.3] or [25, Ch. 1.2]). The

square of the Vandermonde determinant,
∏

i<j |λi − λj|2, is the Jacobian of this change
of coordinates.

This formula is speci�c for HN ⊂ MN(C). For the symmetric matrices in MN(R)
the exponent of the Vandermonde determinant is 1, while for the self-adjoint matrices in
MN(H) it is 4. This exponent is often denoted β and called the Dyson exponent in the
random matrix theory literature.

The value of this exponent plays a signi�cant role in the behaviour of the random
matrix ensemble. Interestingly, for a lot of random matrix theory techniques there is
no reason to restrict the Dyson exponent to β = 1, 2, 4, or even β integer (see [23] and
references therein). We will see in Chapter 4 that in our toy model of quantum gravity
higher (though still integer) β appear naturally.

Given a random matrix ensemble over self-adjoint real, complex or quaternionic ma-
trices we de�ne the eigenvalue model by the corresponding probability density on RN

for the eigenvalues of the random matrix given by the Weyl integration formula. Since
for a unitarily invariant random matrix model the eigenvalues of the matrix are the only
interesting observables, we choose or focus to be on the distribution of these eigenvalues.
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De�nition 1.2.2. Let (M, P ) be a unitarily invariant random matrix ensemble forM⊆
MN(C). Let Pev be the eigenvalue density obtained by Weyl integration, then for m =
1, . . . , N the m-point density associated of the random matrix ensemble is given by

PN
m (x1, ..., xm) =

∫
RN−m

PN(x1, ..., xN) dxm+1... dxN .

The 1-point density will also be referred to as the spectral density.
The spectral density satis�es

〈Tr(f(H))〉 =

∫
R
f(x)PN

1 (x) dx.

1.2.2 Large-N limits and scaling

There are very few random matrix ensembles for which interesting observables can be
explicitly computed, even for single-trace single-matrix unitarily invariant models. What
is generally accessible is the large-N limit, or the limit where the matrix sizes tend to
in�nity. One of the reasons for this is that large randommatrices tend to be asymptotically
free, which is a notion of independence for noncommutative probability spaces [51].

Given a unitarily invariant random matrix model, the large-N limit is concerned with
quantities of the form

lim
N→∞

〈 1

N

N∑
i=1

O(λi)〉N

for functions O : R→ R, where 〈•〉N is the expectation value of a random matrix model of
N ×N matrices4. To get a sensible answer out of this limit there are of course conditions
on the sequence of random matrix ensembles, but requiring for example that they are
�constant� is not only hard to de�ne (since the domain of the probability density changes)
it also will not generally lead to interesting results.

Suppose we have a potential V and corresponding action S(H) = Tr(V (H)), the
sequence of random matrix models to consider for a sensible large-N limit is then

1

ZN
e−NS(H) dH

de�ned on HN . This is formally shown in, for example, [25, 1.4], but it can be concluded
by a mostly intuitive argument as well.

Consider the Weyl integration formula, Equation 1.1, for S(H) = Tr(V (H)). We can
pull the Vandermonde determinant into the exponential to get a new, non-polynomial,
potential for the eigenvalues

−
N∑
i=1

V (λi) +
β

2

∑
i 6=j

log(|λi − λj|).

4This is a very informal de�nition, the general idea is that the size of the matrices involved grows to
in�nity. The speci�c sizes and normalization of the eigenvalue sum will depend on the speci�c model.
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This is the potential of a gas of N particles in one dimension with 1
r
repulsion inside the

con�ning5 potential V . As N grows, the total energy represented by the repulsive force
grows like N2. On the other hand, the total energy in the con�ning potential grows like
N . In order to balance these energies the density of the particles must go to zero, as the
particles need to be ever further apart to balance the rapidly increasing repulsion with
the con�ning potential.

If we instead consider the sequence of models with SN(H) = N Tr(V (H)) both the
energy represented by the con�ning potential and the repulsive force grow like N2. Now
they can be in balance without particles escaping to in�nity (the sequence of densities is
tight, in terms of De�nition 3.1.3). Thus we conclude that the correct sequence of models
for such a single-matrix ensemble de�ned by a potential V is SN(H) = N Tr(V (H)). We
could also err the other direction, where we consider for example SN(H) = N2 Tr(V (H)).
In this case the con�ning potential will dominate at large N and all eigenvalues will
concentrate around the minima of V (x).

We will encounter higher order interactions, such as multi-trace terms, that are ex-
pressed as sums over multiple eigenvalues. These terms require a similar normalization.
For example

Tr(H)4 =

(
N∑
i=1

λi

)4

=
N∑

i,j,k,l=1

λiλjλkλl

should be multiplied by the power of N that makes the aggregate of order N2, so that it is
of the same order as the eigenvalue repulsion caused by the Vandermonde term. Although
one could deviate from this if the action S(H) has a repulsive force of a di�erent order
built in.

5If the potential is not con�ning the action does not de�ne a probability density and should instead
be treated as a divergent matrix model, see [33] or [24].



Chapter 2

Immersions between spectral triples

The goal of this chapter is to realize an immersion of manifolds in the language of spectral
triples. While this will be couched in the language of unbounded KK-theory I want to
stress that the goal is not to do KK-theory. In Section 2.3 we check that our construction
makes sense in KK-theory (i.e. topologically). But everywhere else we will be thinking
of the cycles themselves and not the classes they represent. The idea behind this is that
KK-theory is topological in nature while we are looking for geometric data.

The idea of the construction in this chapter is based on the shriek map in noncom-
mutative geometry [16, 11]. Given a smooth, K-oriented map f : X → Y between
Riemannian manifolds, loc. cit gives a construction for a bounded KK-cycle f! between
C(X) and C(Y ). This class is used to prove an index theorem for foliations and, more
importantly for us presently, this construction is functorial. To be precise, if f : X → Y
and g : Y → Z are smooth maps, then

(g ◦ f)! = f! ⊗ g! (2.1)

where ⊗ denotes the Kasparov product.
Taking a closer look at the construction of this shriek class, for a spinc manifold X,

the point map pt : X → {∗} gives a class represented by the bounded transform of the
canonical spectral triple of X. So if f : X → Y is a smooth, K-oriented map we get a
product in KK theory

(ptX)! = f! ⊗ (ptY )!

where (ptX)! and (ptY )! are represented by the bounded transforms of the spectral triples
of X and Y . Our goal is to lift this construction to the level of unbounded KK-cycles and
recover geometric data of the map f , or at least in speci�c cases. In summary, we want
to use this bounded construction as inspiration to write down a product of unbounded
KK-cycles, in the sense of [49, 37, 50, 38].

In [38] this has been done for the case where f : X → Y is a submersion of manifolds,
since that is one of the cases where the construction of f! already has an unbounded
character. In loc. cit an unbounded KK-cycle (EV , DV ) of �vertical spinors� and a
vertical Dirac operator are constructed. The unbounded product then yields

DX = DV ⊗ 1 + 1⊗∇V DY + κ

18
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where κ is a bounded operator giving the curvature of the submersion. The other case
where the construction of f! lends itself to this unbounded experimentation is when f is
an immersion. In this chapter we study the further simpli�ed setting of a codimension 1
embedding.

For an embedding it turns out we do not get the same type of factorization that is seen
in loc. cit.. This is mainly due to the fact that a Riemannian submersion gives control
over the Riemannian metric on the entire domain and codomain, while the metric outside
the range of an immersion is unknown, see Section 2.1 for more details. This problem
is sidestepped by constructing a family of unbounded KK-cycles, each corresponding
to progressively smaller neighbourhoods of the embedded manifold. These unbounded
KK-cycles are constructed in Section 2.2.

Next, in Section 2.3 we compute the unbounded product of our unbounded KK-
cycles with the spectral triple for Y . Followed by the analysis required to verify that
this product is again a spectral triple. Finally in Section 2.4 we show, as a check, that
our construction gives the Kasparov product when interpreted in KK-theory. We also
discuss how to recover the embedded manifold and the mean curvature of the embedded
manifold from the family of products.

This chapter is based on the work also reported in the paper [62] and preprint [63].

2.1 Geometric setup

Throughout this chapter let Y be a smooth, n+ 1 dimensional, Riemannian, spinc mani-
fold and let ı : X ↪→ Y be a �xed smooth, oriented, Riemannian codimension 1 embedding
of a compact manifold X. The unit normal vector �eld to this embedding will be denoted
ν.

Our �rst goal in this section is establishing the concept of Fermi coordinates, or
generalized normal coordinates, around an embedded manifold. A good reference to
learn more about this is [30]. Normal coordinates may be familiar from general relativity
or general di�erential geometry, they are obtained by choosing an orthonormal frame at
a point of a Riemannian manifold and de�ning coordinates using geodesic �ow along the
basis vectors of this frame. This can be adapted to an embedded manifold X ↪→ Y by
choosing a frame on the normal bundle of X and de�ning coordinates around X using
geodesic �ow along these vectors normal to X to obtain �radial� coordinates around
X. Combining this with a choice of coordinates on X itself yields Fermi coordinates.
Regular normal coordinates around a point p are an example of Fermi coordinates for
the embedding {p} ↪→ Y .

We will make use of these Fermi coordinates to construct a family of, di�eomorphic
but non-isometric, parallel hypersurfaces to X in a tubular neighbourhood of X ⊂ Y and
equip each of these copies with a spinc structure and Dirac operator. We then �nd how
this family of tangential Dirac operators relates to the ambient Dirac operator on Y .

Along the way several constructions will depend on which of X and Y is even dimen-
sional. The changes between these situations are minor, so we will often do the proofs in
one of these cases while recording both versions in the results.
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2.1.1 Notation and Fermi coordinates

Given our embedding ı : X ↪→ Y de�ne the map ı̃ : X × R→ Y by (x, s) 7→ expı(x)(sν)
where exp is the exponential map of Y . In other words, a pair (x, s) is sent to the time
s �ow starting at ı(x) along the vector�eld ν. Since X is compact there is some ε0 > 0
such that ı̃ : X × (−ε0, ε0) → Y is a di�eomorphism onto its image (this is a tubular
neighbourhood theorem, see for example [30, Lemma 2.3]). For a visual guide to theses
de�nitions see Figure 2.1.

With ε0 we can de�ne two Riemannian manifolds: X × (−ε0, ε0), with the product
metric, and W := ı̃ (X × (−ε0, ε0)) with the metric induced by W ⊂ Y . We now rede�ne
ı̃ to be the di�eomorphism

ı̃ :X × (−ε0, ε0)→ W

(x, s) 7→ expı(x)(sν).

We will also often use the projection

π :X × (−ε0, ε0)→ X

(x, s) 7→ x,

and the parallel embeddings

ı̃s :X → W

x 7→ ı̃(x, s).

Both X × (−ε0, ε0) and W come with a foliation into leaves di�eomorphic to X. For
W this foliation is induced by the level-sets of the radial coordinate function1

s :W → (−ε0, ε0)

ı̃(x, s) 7→ s.

For X × (−ε0, ε0) the foliation is given by leaves having constant coordinate in (−ε0, ε0).
We call the leaves of this foliation parallel hypersurfaces to X and denote them by

Xs = {y ∈ W | s(y) = s}.

By the generalized Gauss Lemma (see for example [30, Cor. 2.14]) the vector �eld

∂s = (̃ıs)∗ν

is the unit normal vector �eld to Xs. The tangential vector bundle over W is then the
bundle ⊔

(x,s)∈X×(−ε0,ε0)

Tı̃(x,s)Xs,

and the normal vector bundle over W is the line bundle generated by ∂s.
The key point of this chapter will be to relate, or in some way intertwine, the two

Riemannian manifolds X × (−ε0, ε0) and W .

1The terminology �radial� rather than normal is chosen with regard to the terminology in [30] and
future generalizations to higher codimensions. For example in codimension two the tubular neighbour-
hood will be X ×D for a disk D of radius ε0, this gives rise to radial (away from X), tangential (along
X) and spherical (circling X) directions that all likely behave di�erently.
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Figure 2.1: This diagram shows how X and the parallel hypersurfaces Xs sit inside Y .
The green lines are the paths expı(x)(sν). The distortion of the metrics between X and
Xs is illustrated by the distance along Xs between the green paths changing.

Example 2.1.1. For the embedding of the radius 1 sphere ı : Sn ↪→ Rn+1 the vector �eld
ν is the radial vector �eld ∂r =

∑
xi∂i so that

expı(θ)(s∂r) = (s+ 1)ı(θ)

for any θ ∈ Sn and the right-hand side uses the vector space structure on Rn+1. This is
a di�eomorphism for s ∈ (−1,∞) so we can pick any ε0 < 1.

The radial coordinate function s coincides with the actual radius up to an o�set of 1,
s(~x) = ‖~x‖ − 1. For the metric gs the parallel hypersurface (Sn)s is a sphere of radius
s+ 1, while for the metric g0 it is a sphere of radius 1.

Using the global radial coordinate we can canonically identify bundles over W with
bundles over X.

Lemma 2.1.2. Let E be a vector bundle over W with a metric connection ∇E. For any
(s, s′) there is an isomorphism of vector bundles Us′,s : E|Xs → E|X′s and Us′′,s′Us′,s =
Us′′,s.

Proof. We will de�ne the map Us′,s on each �bre. Let γ : (s, s′) → W be the path
de�ned by expı(x)(tν). Then parallel transport along γ de�nes a linear isomorphism
Us′,s,x between Eı̃(x,s) and Eı̃(x,s′). Since by de�nition of W these paths preserve the base
point in X the linear isomorphisms Us′,s,x assemble into an isomorphism of vector bundles
E|Xs → E|Xs′ .

Corollary 2.1.3. Suppose E is a vector bundle over Y and ψ : ı(X) → E is a section
of E|ı(X). Then ψ extends to a section of E over W .
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Proof. De�ne φ(̃ı(x, s)) = Us,0ψ(ı(x)).

We can use Corollary 2.1.3 to construct Fermi frames, which have a very useful
property.

Lemma 2.1.4. Let E be a vector bundle overW with metric connection∇E and
(
U, {ei}ki=1

)
a local frame for E|X0. Then in the frame

(
U × (−ε0, ε0), {U•,0ei, ∂s}ki=1

)
we have

∇E
∂s =

∂

∂s
.

Proof. This is entirely by design. The path s 7→ Us,0(ei) is the ∇E-parallel transport
along the geodesic with tangent vector ∂s, so by de�nition the frame element Uei :
(x, s) 7→ Us,0ei(x) has

∇E
∂s (Uei) = 0.

As mentioned before our main goal will be to relate or intertwine the Riemannian
manifolds X × (−ε0, ε0) and W . For this we will employ two main tools. The �rst one
is the change of volume function Λ de�ned by

Λ · ı̃∗ωY = π∗ωX ∧ ω(−ε0,ε0) (2.2)

where ωM denotes the volume form of a Riemannian manifold M .
The change of volume function has the following local expression.

Lemma 2.1.5. Let (U, ~x) be a coordinate patch for X. Then for (x, s) ∈ X × (−ε0, ε0)
with x ∈ U we have

Λ(x, s) =

√
det gY (x, 0)

det gY (x, s)
.

Here gY (x, t) is the matrix of the Riemannian metric of Y at ı̃(x, t) in the induced Fermi
coordinates.

Proof. Choose a patch of local coordinates (U, (x1, . . . , xn)) for X, this gives coordinates
(U × (−ε0, ε0), (x1, . . . , xn, s)) on X × (−ε0, ε0). Using ı̃ it further gives coordinates
(̃ı(U × (−ε0, ε0)), (y1, . . . , yn, s)) on W .

In the frame associated to these coordinates we have

(̃ı∗ωY )(x,s) =
√

det gY (x, s) dx1 ∧ . . . ∧ dxn ∧ ds,

since ı̃ pulls back dyi to dxi and ds to ds. On the other hand we have

π∗ωX ∧ ω(−ε0,ε0) =
(√

det gX(x) dx1 ∧ . . . ∧ dxn

)
∧ ds.

Now, Since ∂s is the unit normal to eachXs we get gY (x, s) = gXs(x)⊕1, and in particular
gY (x, 0) = gX0(x)⊕ 1 = gX(x)⊕ 1 since ı is a Riemannian embedding.

So in conclusion

Λ(x, s) =

√
det gX(x)√

det gY (x, s)
=

√
det gY (x, 0)

det gY (x, s)
.
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The second object that will help us relate X × (−ε0, ε0) and W is the second funda-
mental form, or rather the family of second fundamental forms associated to the family
of submanifolds Xs. The second fundamental form is the symmetric C∞(Xs)-bilinear
form de�ned by

II(x,s)(A,B) := 〈∇Y
A(B), ∂s〉 = −〈B,∇Y

A(∂s)〉 (2.3)

for A,B ∈ Tı̃(x,s)Xs, the Riemannian metric 〈•, •〉 is the metric on Xs ⊂ Y . Symmetry
of II follows from the observation that ∇Y

A(B) −∇Y
B(A) = [A,B] which is tangential to

Xs. For a more information on II and its role in the Gauss, Codazzi, and Ricci equations
see, for example, [57].

The trace of II is de�ned to be the trace of the operator, also known as the shape
operator,

A 7→ II(A, •)]

where ] is the musical isomorphism from (Tı̃(x,s)Xs)
∗ → Tı̃(x,s)Xs de�ned by the Rieman-

nian metric. Alternatively

Tr(II) =
n∑
i=1

II(ei, ei)

for an orthonormal basis {ei}ni=1 of Tı̃(x,s)Xs.
In many references, such as [30], the shape operator S is preferred over the second

fundamental form II. The shape operator is more natural in a way, since as an operator
on Tı̃(x,s)Xs it has a trace without needing to reference the Riemannian metric. However,
we prefer the second fundamental form because it likely generalizes better to higher
codimensions. II can be de�ned without explicit reference to the unit normal vector �eld
by de�ning it as the di�erence of the Levi-Civita connections of Xs and Y (which we
state as a consequence, in Lemma 2.1.6), in this case II becomes a bilinear form with
values in the normal bundle.

Lemma 2.1.6. Let ∇Y and ∇Xs be the Levi-Civita connections on Y and Xs respectively.
Then

∇Xs
A (B) = ∇Y

A(B)− II(x,s)(A,B)∂s

for A,B ∈ Tı̃(x,s)Xs.

Proof. For an embedded submanifold Xs ⊂ Y the Levi-Civita connection on Xs is given
by projecting the Levi-Civita connection of Y to the tangent space of Xs. To be precise,
let A,B as in the statement of the lemma and πTı̃(x,s)Xs the projection from Tı̃(x,s)Y to
Tı̃(x,s)Xs. Then

∇Xs
A (B) = πTı̃(x,s)Xs∇

Y
A(B).

Since Xs ⊂ Y has codimension one and ∂s is a unit normal to Xs we get

∇Xs
A (B) = ∇Y

A(B)− 〈∇Y
A(B), ∂s〉∂s

which gives the desired result.

Our two comparison tools, the second fundamental form and the change of volume
function, are in fact related.
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Lemma 2.1.7. With Λ as in Equation 2.2 and II the second fundamental form as in
Equation 2.3. Then

1

Λ

[
∇Y
∂s ,Λ

]
= Tr(II),

where the trace of the bilinear form II is de�ned using the metric gY .

Proof. Since this is a coordinate independent statement we can verify it in a Fermi frame,
i.e. a frame for the tangent bundle of W constructed from a frame for X using Corollary
2.1.3 with ∂s added in to complete the frame.

In such a frame Lemma 2.1.4 tells us that ∇Y
∂s

= ∂
∂s
, so we want to show that

1

Λ

(
∂Λ

∂s

)
= Tr(II).

But this is [30, Thm. 3.11], with the observation that their change of volume function θ
is our 1

Λ
which accounts for the minus sign.

Example 2.1.8. Consider again the embedding of the sphere Sn ↪→ Rn+1. For ∂θ, ∂φ
spherical tangent vectors we can compute II to be

II(∂θ, ∂φ) = −〈∂θ,∇Rn+1

∂φ
(∂r)〉 = −〈∂θ,

1

r
∂φ〉 = −1

r
〈∂θ, ∂φ〉

where 〈•, •〉 refers to the Riemannian metric on the sphere of radius r. Since the trace is
de�ned relative to this metric, it evaluates to −n

r
(alternatively note that the corresponding

shape operator is −1
r
times the identity).

On the other hand, Λ(~θ, r) = 1
rn

since Λ since the volume form on the sphere of radius
r is rn times the volume form on the sphere of radius one. So we indeed have

1

Λ
∂rΛ = rn(−nr−n−1) = −n

r
= Tr(II).

In this example II is independent of the spherical coordinate ~θ, this will of course not
be the case in general and leads to signi�cant simpli�cations for the sphere.

2.1.2 Relating the Dirac operators

We continue the geometric setup by relating the Dirac operators on the parallel hyper-
surfaces Xs and the Dirac operator on Y . Similar constructions are done in [2, 9] but we
include the details here since we will make use of particular details of the construction.
We will also make use of the Pauli matrices that are de�ned in Example 1.1.7.

The �rst step in this is to construct a spinc structure on each Xs.

Lemma 2.1.9. Let ΣY be the spinor bundle over Y . If n = dim(X) is even, de�ne

ΣXs = ΣY |Xs

with Cli�ord multiplication
cs(A) = icY (A)cY (∂s).
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Then ΣXs is a spinor bundle for Xs.
If n is odd instead de�ne

Σ±Xs = Σ±Y |Xs
where Σ±Y refers to the +1 and −1 eigenspaces of the grading on ΣY , equipped with Cli�ord
multiplications

c±s (A) = icY (A)cY (∂s)|Σ±Y .

In this case both (Σ±Xs , c
±
s ) de�ne spinor bundles for Xs.

Proof. Since Tı̃(x,s)Y = Tı̃(x,s)Xs ⊕ R∂s and ∂s is globally de�ned, the map

Cl(TXs)→ Cl0(TY )|Xs
A 7→ iA∂s,

de�ned on generators, gives an isomorphism of Cli�ord bundles.
If n is odd we need to establish that Cl0(TXs) ∼= End(Σ±Xs). The inclusion ⊆ is clear

so let ψ ∈ End(Σ+
Xs

) = End(Σ+
Y |Xs). By Corollary 2.1.3 (note that a spinor bundle comes

with a spin connection) ψ extends to an endomorphism ψ+ of Σ+
Y . De�ne ψ− ∈ End(Σ−Y )

by cY (∂s)ψ+cY (∂s) so that ψ+ ⊕ ψ− corresponds to an even endomorphism of ΣY .
This means ψ+⊕ψ− is realized by a section of Cl0(TY ). This section commutes with

cY (∂s), so its restriction to Xs lies in the image of Cl0(TXs). Thus ψ is realized by an
element of Cl0(TXs) and we also have the inclusion ⊇. Starting from a ψ ∈ End(Σ−Xs)
the construction is the same with the correct exchanges of +s and −s.

If n is even the procedure is simpler. In this case we have Cl(TXs) ∼= Cl0(TY )|Xs ∼=
End(ΣY )|Xs , which in turn is isomorphic to End(ΣXs) using Corollary 2.1.3. In this case
cY (∂s) becomes the grading operator for ΣXs .

Remark 2.1.10. If n is odd we can identify Σ+
Y and Σ−Y using cY (∂s), as we essentially

did in the above proof. Under this identi�cation, c+
s = −c−s and we can represent this in

terms of Pauli matrices: ΣY |Xs ∼= ΣXs ⊗C2 with grading 1⊗ σ3, cY (∂s) acting by σ1 and
Cl(TXs) acting via cs ⊗ σ3.

Both bundles come with their own Dirac operators, which under the isomorphism by
cY (∂s) di�er by a minus sign. In a way, this is the �rst time the concept of �doubling�
odd cycles shows up (see De�nition 1.1.10).

In analogy with the tangential vector bundle over W and the terminology in [38] we
call the bundle over W de�ned by ⊔

s∈(−ε0,ε0)

ΣXs

the tangential spin bundle and sections of this bundle tangential spinors.
We have now constructed the spin bundles ΣXs for Xs, but we still need to specify

the spin connections on these bundles. For this we use the spin connection version of
Lemma 2.1.6 that relates the Levi-Civita connections by the second fundamental form.
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Lemma 2.1.11. Let ∇ΣY be the spin connection on ΣY , A a tangential vector �eld over
W and ψ a tangential spinor. Then, for n even,

∇ΣXs
A|Xs

(ψ|Xs) =
(
∇ΣY
A ψ

)
|Xs −

1

2
ics
(
II(A, •)]|Xs

)
(ψ|Xs)

de�nes a spin connection on ΣXs. For n odd we get

(
∇Σ+

Xs

A|Xs
⊕∇Σ−Xs

A|Xs

)
(ψ|Xs) =

(
∇ΣY
A ψ

)
|Xs −

1

2
i(c+

s ⊕ c−s )
(
II(A, •)]|Xs

)
(ψXs)

where ∇Σ±Xs are spin connections on Σ±Xs.

Proof. There are several things to check here, let us start with verifying that this de�ni-
tion gives a well-de�ned spin connection on ΣXs .

While Corollary 2.1.3 guarantees that all sections of ΣXs extend to tangential spinors
over W it is not a priori clear that this de�nition is independent of the extension. To
see that the de�nition is in fact independent of the extension we can verify that ∇ΣY

A is
C∞ ((−ε, ε))-linear, where g ∈ C∞ ((−ε0, ε0)) acts by multiplication.

The connection property gives us

∇ΣY
A (gψ) = A(g)ψ + g∇ΣY

A (ψ) = g∇ΣY
A (ψ),

using that A is a tangential vector �eld and g is tangentially constant. The second term,
involving II, is de�ned in terms of ψ|Xs so is certainly independent of the extension.

We then need to show that ∇ΣXs actually de�nes a spin connection. In the following
computations let A,B be tangential vector �elds over W , and φ, ψ tangential spinors.
Then, suppressing restrictions to Xs for legibility,

〈∇ΣXs
A ψ, φ〉+ 〈ψ,∇ΣXs

A φ〉 = 〈∇ΣY
A ψ, φ〉 − 〈1

2
ics
(
II(A, •)]

)
ψ, φ〉

+ 〈ψ,∇ΣY
A φ〉 − 〈ψ, 1

2
ics
(
II(A, •)]

)
φ〉,

= A(〈ψ, φ〉) + 〈ψ, 1

2
ics
(
II(A, •)]

)
φ〉 − 〈ψ, 1

2
ics
(
II(A, •)]

)
φ〉,

= A(〈ψ, φ〉),

so ∇ΣXs is a metric connection.
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Additionally we can compute

[
∇ΣXs
A , cs(B)

]
=
[
∇ΣY
A , icY (B)cY (∂s)

]
− 1

2
i
[
cs
(
II(A, •)]

)
, cs(B)

]
,

= i
[
∇ΣY
A , cY (B)

]
cY (∂s) + icY (B)

[
∇ΣY
A , cY (∂s)

]
− 1

2
i
[
cs
(
II(A, •)]

)
, cs(B)

]
,

= icY
(
∇Y
A(B)

)
cY (∂s) + icY (B)cY

(
∇Y
A(∂s)

)
− 1

2
i
[
cs
(
II(A, •)]

)
, cs(B)

]
,

= icY
(
∇Xs
A (B)

)
cY (∂s) + icY (II(A,B)∂s) cY (∂s)

− icY (B)cY
(
II(A, •)]

)
− 1

2
i
[
cs
(
II(A, •)]

)
, cs(B)

]
,

= cs
(
∇Xs
A (B)

)
+ i II(A,B)− 1

2
i
{
cY (B), cY

(
II(A, •)]

)}
,

= cs
(
∇Xs
A (B)

)
+ i II(A,B)− i〈B, II(A, •)]〉,

= cs
(
∇Xs
A (B)

)
,

using Lemma 2.1.6, that II(A, •)] = −∇Y
A(∂s) and that cs(A)cs(B) = cY (A)cY (B) in the

third and fourth steps. So ∇ΣXs is a Cli�ord connection.

The computations for n odd are identical although for well-de�nedness the additional
observation that∇ΣY preserves the grading is required. This follows from the fact that the
grading operator is self-adjoint, so that Σ±Y are orthogonal, and the that the connection
is metric.

So we have now established that each Xs is a spin
c manifold by explicitly constructing

a spin bundle and spin connection from the the spin structure on Y . This allows us to
de�ne Dirac operators on each Xs giving a family of tangential Dirac operators over W .
The Dirac operator on Y can be decomposed as this family of tangential Dirac operators,
a radial Dirac operator and a curvature term, as the next proposition shows.

Proposition 2.1.12. On the neighbourhood W of ı(X) the Dirac operator DY can, if
n = dim(X) is even, be written

(DY ψ)(̃ı(x, s)) = icY (∂s)

(
(DXsψ|Xs)(x)− 1

2
Tr
(
II(x,s))ψ(̃ı(x, s)

)
+∇ΣY

∂s
(ψ)(̃ı(x, s))

)
,

if n is odd instead

(DY ψ)(̃ı(x, s)) = icY (∂s)

((
(D+

Xs
⊕D−Xs)ψ|Xs

)
(x)− 1

2
Tr
(
II(x,s))ψ(̃ı(x, s)

)
+∇ΣY

∂s
(ψ)(̃ı(x, s))

)
.

Proof. We do the calculation for n even. Let {e1, ..., en, ∂s} be a local orthonormal frame
for TY and choose a frame for ΣY where the cY (ei), cY (∂s) act by a constant matrix.



28 Chapter 2. Immersions between spectral triples

Then with summation over the repeated index j,

(DY ψ)(̃ı(x, s)) = icY (ej)∇ΣY
ej

(ψ)(̃ı(x, s)) + icY (∂s)∇ΣY
∂s

(ψ)(̃ı(x, s)),

= −cY (∂s)cs(ej)

(
∇ΣXs
ej

(ψ)(̃ı(x, s)) +
1

2
ics
(
II(x,s)(ej, •)]

)
ψ(̃ı(x, s))

)
+ icY (∂s)∇ΣY

∂s
(ψ)(̃ı(x, s)),

= icY (∂s)

(
ics(ej)∇ΣXs

ej
(ψ|Xs)(̃ıs(x))− 1

2
cs(ej)cs

(
II(x,s)(ej, •)]

)
ψ(̃ı(x, s))

+∇ΣY
∂s

(ψ)(̃ı(x, s))

)
,

= icY (∂s)

(
(DXsψ|Xs)(̃ıs(x))− 1

2
Tr(II)ψ(̃ı(x, s)) +∇ΣY

∂s
(ψ)(̃ı(x, s))

)
where we use that, because {ei} is orthonormal and II is symmetric,∑

j

cs(ej)cs
(
II(x,s)(ej, •)]

)
=
∑
j,k

cs(ej)cs
(
II(x,s)(ej, ek)ek

)
,

=
∑
j,k

II(x,s)(ej, ek)cs(ej)cs(ek),

=
∑
j

II(x,s)(ej, ej).

The statement for n odd follows from essentially the same computation, in that case
ΣY = Σ+

Xs
⊕ Σ−Xs and on this bundle icY (ej) = cY (∂s)(c

+
s (ej) ⊕ c−s (ej)), c.f. Remark

2.1.10.

Example 2.1.13. For the sphere Sn ↪→ Rn+1 this recovers the formula for the Dirac
operator in spherical coordinates. For n = 1 we get

DR2 = icR2(∂r)

(
iσz

1

r

∂

∂θ
− 1

2
Tr (IIθ,r) +

∂

∂r

)
= i

σθ
r

∂

∂θ
+ iσr

∂

∂r
+ iσr

1

2r

where σθ = 1
r
(xσy − yσx) and σr = 1

r
(xσx + yσy) and IIθ,r is the bilinear form on TθS

1

previously computed in Example 2.1.8 to be −1
r
〈•, •〉.

The appearance of the 1
2r

term is due to the required frame for the spinors, namely a
frame wherein σr and σθ act by constant matrices and wherein DS1

r
= 1

r
∂
∂r

(so constant

spinors are parallel along circles). Such a frame is for example given by ψ1 =
(√

r(x−iy)−1

0

)
,

ψ2 =
(

0
1√
r

)
relative to the spinor basis where c(∂x) = σx and c(∂y) = σy.

Example 2.1.14. This proposition also clari�es the doubling procedure described in Sec-
tion 1.1.2. In a frame for ΣY = Σ+

Y ⊗ C2 as described in Remark 2.1.10 we get

DY = i (1⊗ σ1)

(
D+
Xs
⊗ σ3 −

1

2
Tr (II) +∇ΣY

∂s

)
,

= D+
Xs
⊗ σ2 + i (1⊗ σ1)

(
∇ΣY
∂s
− 1

2
Tr (II)

)
,

with grading 1⊗ σ3, so we see the doubled version of DXs appear.
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2.2 The unbounded KK-cycles

Let us now turn to introducing the basic building blocks of the immersion as an un-
bounded product. We will start by de�ning the spectral triples representing X and Y
which are simply the (appropriately doubled) canonical spectral triples for these mani-
folds. Next we turn to the family of unbounded KK-cycles representing the immersion
itself. We then conclude with the de�nition of the index class, that turns out to play a
crucial role in our construction.

2.2.1 The spectral triples [X] and [Y ]

Let us start with the spectral triple for Y . The canonical spectral triple is built from the
given spin structure ΣY and is given by(

C∞0 (Y ), L2(ΣY ), DY

)
.

If n = dim(X) is odd, Y is an even dimensional manifold and this is the representative
we use.

If n is even, Y is odd dimensional so we want to work instead with the doubled
version, see De�nition 1.1.10,(

C∞0 (Y ), L2(ΣY )⊗ C2, DY ⊗ σ1; 1⊗ σ3

)
.

This is an unbounded C0(Y )⊗ Cl1-C cycle with the generator of Cl1 acting by 1⊗ σ1.
For X the story is similar. We get a spinc structure on X (by isometry with X0) by

Lemmas 2.1.9 and 2.1.11. If n is odd we want to use the doubled version of the canonical
triple for X, which can be realized by using the full spinor bundle ΣY rather than just
its +1 or −1 eigenspace, see Remark 2.1.10. This gives(

C∞(X), L2(Σ+
X)⊗ C2, D+

X ⊗ σ2; 1⊗ σ3

)
,

an unbounded C(X) ⊗ Cl1-C cycle with the generator of Cl1 acting by σ1. For n even
we get (

C∞(X), L2(ΣX), DX ; c(ν)
)
.

In all cases we use [X] and [Y ] to refer to the (appropriately doubled) spectral triples.

2.2.2 The immersion class

De�ning the unbounded KK-cycle representing the immersion, which we will call ı!,
takes some more work. In part because we will be equipping it with a connection as well.
Our construction is based on the simpli�ed description of the bounded shriek class of
an immersion in [16, Prop. 2.8]. In [62, Sec. 2.3] we have previously veri�ed that the
construction of this section indeed has the correct bounded transform.

Fix any ε < ε0 and de�ne the C(X)-C0(Y ) bimodule E by

E0 = C0 (X × (−ε, ε)) (2.4)
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with
(gψh)(x, s) = g(x)ψ(x, s)h(̃ı(x, s))

for g ∈ C(X), h ∈ C0(Y ). Further equip it with the C0(Y ) valued inner product

〈ψ, φ〉E(y) =

{
Λ(x, s)ψ(x, s)φ(x, s) y = ı̃(x, s), s ∈ (−ε, ε),

0 elsewhere.

De�ne the operator

S0 : Dom(S0)→ E0 (2.5)

ψ 7→ fψ

where
f(x, s) = f(s) = − π

2ε
tan
(πs

2ε

)
(2.6)

and the domain Dom(S0) = {ψ ∈ E0 | fψ ∈ E0} is the maximal domain of S.

Lemma 2.2.1. The pair
(E0, S0)

de�nes an unbounded C(X)-C0(Y ) cycle.

Proof. By De�nition 1.1.18 we need to verify that E0 is indeed a Hilbert C(X)-C0(Y )
bimodule and that S0 is self-adjoint, has compact resolvents and is regular. To get
that E0 is a Hilbert bimodule we need to check the algebraic structure, which is entirely
straightforward so we skip it here, and that E0 is complete in the induced norm.

The norm induced on E0 by the C0(Y )-valued inner product is

‖ψ‖2 = ‖(Λ|ψ|2) ◦ ı̃−1‖C0(Y ) = sup
(x,s)∈X×(−ε,ε)

|Λ(x, s)| · |ψ(x, s)|2

which is equivalent to the C0(X× (−ε, ε)) norm since the change of volume Λ is bounded
and bounded away from zero for ε < ε0 ([30, Lem. 3.9]). This means that E0 is complete.

Next we need to establish that S0 is self-adjoint and regular. As a multiplication
operator this is fairly straightforward, even in the Hilbert module context. By de�nition,

Dom(S∗0) = {ψ ∈ E0 | ∃φ such that 〈ψ,Dξ〉 = 〈φ, ξ〉∀ξ ∈ Dom(S0)}

So if ψ ∈ Dom(S∗0), ψfξ = φξ for some φ ∈ E0 and all ξ ∈ Dom(S0) which includes all
compactly supported continuous functions. This means that ψf = φ, so ψf ∈ E0 which
means ψ ∈ Dom(S0). Since f is multiplication by a real function it is symmetric so this
proves that S0 is self-adjoint.

To �nd that S0 has compact resolvents we note that (S0 + i)−1 is multiplication by
the function 1

f+i
, which is a function in C0 ((−ε, ε)) so the argument from Example 1.1.15

applies.
Finally S0 is regular since 1 + S∗0S0 is multiplication by the function 1 + f 2, which

has full range since its inverse is multiplication by the C0-function
1

1+f2 .
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Next consider the two Hilbert bimodules

Cl1,L = Cl1(Cl1)C,

Cl1,R = C(Cl1)Cl1 ,

where Cl1 acts by multiplication. The C-valued inner product is given by declaring 1
and the generator e to be an orthonormal basis, the Cl1-valued inner product is the usual
inner product 〈α, β〉 = α∗β.

We then set

E =

{
E0 ⊗ Cl1,R, n is even,
E0 ⊗ Cl1,L, n is odd.

(2.7)

and

S =

{
S0 ⊗ e, n is even,
S0 ⊗ ieγ, n is odd.

(2.8)

so that the ε immersion class de�ned by

ıε! = (E , S) (2.9)

is an unbounded KK-cycle of the right type to match up with [X] and [Y ].
In order to compute the product of the immersion classes ıε! with the spectral triple

for Y we will equip ıε! with a connection as described in Section 1.1.4. To make the
discussion somewhat smoother we suppress the identi�cation ψ ∈ E and ψ ◦ ı̃−1 ∈ C0(Y ).

We de�ne the universal connection using Lemma 1.1.23 on E by, for n even,

∇Eu : E → E ⊗ Ω1
u(C0(Y )⊗ Cl1), (2.10)

ψ ⊗ α 7→ γ(α)⊗ δ(ψ) + γ(ψα)⊗ 1

2Λ
δ(Λ).

Here α ∈ ClL,R and Λ is interpreted a function in C0(Y ) by multiplying it by a bump
function that is 1 on (−ε, ε) and 0 outside (−ε0, ε0), this bump function can then be
absorbed into ψ. To get the de�nition for n odd the only change is to replace the
codomain by E ⊗ Ω1

u(C0(Y )).

Lemma 2.2.2. The curvature of ∇Eu relative to [Y ] is

πDY ⊗σ2

(
(∇E)2

)
= 1E ⊗

(
1

2Λ
[DY ,Λ]

)2

⊗ 1C2 = 1E ⊗
(

1

4Λ2
[DX• ,Λ]2 − 1

4
Tr(II)2

)
⊗ 1C2

if n is even. If n is odd the curvature is almost the same, only without the C2 component
and replacing DX• by D

+
X•
⊕D−X•.

Proof. We use Lemma 1.1.27, which tells us that the represented curvature is given (for
n even) by

πDY ⊗σ2

((
∇E
)2
)

=
(
(πDY ⊗σ2 ⊗ πDY ⊗σ2) (δ(ω)) + πDY ⊗σ2(ω)2

)
,

where in this case ω = 1
2Λ
δ (Λ).
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The part δ(ω) = 0 as it is 1
2
δ2 (log(Λ)) and δ2 = 0, so we compute the square of

πDY (ω).

πDY ⊗σ2(ω)2 =

(
1

2Λ
[DY ⊗ σ2,Λ]

)2

,

=
1

4Λ2

([
iγsDX• − iγs

1

2
Tr(II•) + iγs∇ΣY

∂s
,Λ

])2

⊗ σ2
2,

=
1

4Λ2

(
[iγsDX• ,Λ] +

[
iγs∇ΣY

∂s
,Λ
])2 ⊗ 1C2 ,

=
1

4Λ2

(
−γs[DX• ,Λ]γs[DX• ,Λ]− γs[DX• ,Λ]γsΛ Tr(II)

− γsΛ Tr(II)γs[DX• ,Λ]− γsΛ Tr(II)γsΛ Tr(II)
)
⊗ 1C2 ,

=
1

4Λ2

(
[DX• ,Λ]2 − Λ2 Tr(II)2

)
⊗ 1C2

where we used that Λ commutes with all other functions as well as any Cli�ord matrices,
but γs = cY (∂s) anti-commutes with all Cli�ord matrices.

To get to the desired form the only step left is to note that E and πDY ⊗σ2(ω)2 commute
since all Cli�ord matrices that appear in the curvature are even.

2.2.3 The index class

The �nal unbounded KK-cycle we shall need represents a class in KK0(C,C) which we
denote [1] and refer to as the index class. It will appear as a method to cancel out the
radial derivative, as pairing of a dual-Dirac (or Bott) element with the radial derivative.
See for example [17, Ch. 3.4] for a nice introduction to this, or any book on KK-theory.

De�ne the operator

T :C∞c
(
(−ε, ε),C2

)
→ L2

(
(−ε, ε),C2

)
(2.11)

ψ 7→ iσ1
dψ

ds
− σ2fεψ.

We shall show that T is essentially self-adjoint, has compact resolvent and has index
1. The proof of self-adjointness relies on the speci�c choice of fε de�ned in Equation
2.6. It may be possible to do away with this speci�c choice and use any function such
that f 2 ± f ′ are bounded below. For any such f the operator T will have a self-adjoint
Friedrichs extension (see for example Chapter 5 in [53]), but one needs to �nd a way to
obtain an extension with index one.

To prove self-adjointness we will show that T ± π
2ε
i have dense range by characterizing

their range.

Lemma 2.2.3. Let α = π
2ε
, then as operators on C∞c ((−ε, ε),C2) we have for λ ∈ R,

λ 6= 0

(T + λi)ψ = iσ1I
−1
λ

d

ds
(Iλψ)
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where, for λ 6= ±α,

Iλ(s) =

(
− λ√

λ2−α2 sinh
(√

λ2 − α2s
)

cosh
(√

λ2 − α2s
)
− 1√

λ2−α2fε(s) sinh
(√

λ2 − α2s
)

cosh
(√

λ2 − α2s
)

− 1
λ

(√
λ2 − α2 sinh

(√
λ2 − α2s

)
− fε(s) cosh

(√
λ2 − α2s

)))

and for λ = ±α,

Iλ =

(
−λs 1− sfε(s)

1 1
λ
fε(s)

)
.

Proof. We will showcase the computation for λ = α, the general computation is very
similar only much lengthier.

iσ1I
−1
λ

d

ds
Iλ = iσ1I

−1
λ

(
dIλ
ds

+ Iλ
d

ds

)
= iσ1I

−1
λ

dIλ
ds

+ iσ1
d

ds
.

so we compute

I−1
λ

dIλ
ds

= −
(

1
λ
f(s) −1 + sf(s)
−1 −λs

)(
−λ −f(s)− sf ′(s)
0 1

λ
f ′(s)

)
,

=

(
f(s) − 1

λ
(f(s)2 + f ′(s))

λ −f(s)

)
,

= f(s)σ3 − λσ1,

since 1
λ
(f 2
ε + f ′ε) = − π

2ε
. Multiplying by iσ1 then gives

f(s)σ2 − iλ.

so that in total we recover T − λi.

Proposition 2.2.4. The range of T ± π
2ε
i are dense.

Proof. We can characterize the range of T± π
2ε
i using Lemma 2.2.3. Let u, g ∈ C∞c ((−ε, ε),C2)

and λ = ± π
2ε

such that (T + λi)u = g, then

Iλg = i
d

ds
Iλσ1u

so ∫ ε

−ε
Iλg(s) ds = i [Iλσu]ε−ε = 0.

Conversely, if g satis�es the above equation we can de�ne u ∈ C∞c ((−ε, ε),C2) by

u(s) = −iσ1I
−1
λ

∫ s

−ε
Iλ(t)g(t) dt.
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To see that the set of functions g ∈ C∞c ((−ε, ε),C2) satisfying
∫
Iλg ds is dense

suppose h ∈ C∞c ((−ε, ε),C2). Let(
α
β

)
=

∫ ε

−ε
Iλ(s)h(s) ds.

Since f(s) is unbounded and odd we can �nd an odd function h2 of arbitrarily small
L2-norm such that

∫
Iλ(s)

(
0

h2(s)

)
ds =

(
0
−β
)
. Similarly we can �nd an even function h1

of similarly arbitrarily small L2-norm such that
∫
Iλ(s)

(
0

h1(s)

)
ds = ( −α0 ).

Then h̃ := h+
(

0
h1+h2

)
satis�es

∫
Iλh̃ = 0 and is arbitrarily close to h.

Corollary 2.2.5. The operator T is essentially self-adjoint with the compactly supported
smooth functions as domain.

The next point of order is to show that T has compact resolvents.

Lemma 2.2.6. For λ = ± π
2ε

we have

‖ψ′‖2 ≤ ‖(T + λi)ψ‖2.

Proof. We compute the right-hand side for g ∈ C∞c ((−ε, ε),C2),

〈(T + λi)g, (T − λi)g〉 = 〈g,
(
T 2 + λ2

)
g〉,

= 〈g,
(
− d2

ds2
+ f(s)2 − f ′(s) + λ2 0

0 − d2

ds2
+ f(s)2 + f ′(s) + λ2

)
g〉,

= ‖g′‖2 + 〈g,
(
−2f ′(s) 0

0 0

)
g〉

which gives the desired result since −2f ′(s) ≥ 0.

Proposition 2.2.7. For λ = ± π
2ε

the resolvents T + λi are compact.

Proof. We show that the domain of the self-adjoint extension of T is compact which
implies that T has compact resolvents. Any element in the domain of the extension of T
is the limit of smooth functions in the graph norm of T . Since the Sobolev norm can be
bounded by the graph norm of T by Lemma 2.2.6 any such element lies inH1 ((−ε, ε),C2).
The resolvent than factors as through H1 ((−ε, ε),C2) so it is compact by the Rellich
embedding theorem.

By Corollary 2.2.5 and Proposition 2.2.7 the pair(
L2
(
(−ε, ε),C2

)
, T
)

(2.12)

de�nes an unbounded KK-cycle for KK0(C,C) with grading σ3.
The �nal property of [1] that we want to prove is that it represents the multiplicative

unit in KK0(C,C). This means that we need to prove that T has (graded) index one,
since the index map gives the ring isomorphism KK0(C,C) ∼= Z (e.g. [8, Prop. 18.8.1]).
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Proposition 2.2.8. The operator T has index one.

Proof. The (graded) index of T can be computed by dim kerT+−dim kerT− where T± =
i d
ds
∓ if . The solution to the di�erential equations

d

ds
g = ±fg

is given by g = e±F where F is an anti-derivative for f . In our case F (s) = log
(
cos
(
πs
2ε

))
,

so kerT+ is spanned by cos
(
πs
2ε

)
and is therefore one dimensional. On the other hand

kerT− would be spanned by
(
cos
(
πs
2ε

))−1
, but this is not an L2 function so dim kerT− = 0.

So the index of T is 1.

2.3 The product of the immersion class and X

Now that we have the unbounded cycles ready it is time to take the product of ı̃ε! and
[Y ] to see how [X] and [1] arise.

We will often be dealing with families of operators acting on a bundle over their base.
For example with n even, we have a Dirac operator DXs for all x ∈ (−ε0, ε0) that can act
on L2(ΣXs) for each s. These operators combine into the family operator on L2(ΣY |W )

(DX•ψ) (x, s) = (DXsψ|Xs) (x).

We will use this •-notation whenever we have such a family of operators.

2.3.1 Construction of the product

The �rst step for this is to compute the Hilbert space for the product of ı̃ε! and [Y ]. This
space is the balanced tensor product

E ⊗C0(Y )⊗Cl1

(
L2(ΣY )⊗ C2

)
if n is even and

E ⊗C0(Y ) L
2(ΣY )

if n is odd.
Recall from Section 2.1 that π : X×(−ε0, ε0)→ X denotes the projection map. From

here on we will also use π to denote the projection map to X on any X × (−ε, ε), which
ε is intended will be clear from context.

Lemma 2.3.1. The map

U : E0 ⊗C0(Y ) L
2(ΣY )→ L2(π∗ΣY |ı(X))

ψ ⊗ φ 7→ ψ · (φ ◦ ı̃)

is a unitary map that preserves the smooth sections.
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Proof. We can use Lemma 2.1.2 to identify (ΣY )(x,s)
∼= (ΣY )(x,0), since this is done by

parallel transport using the metric connection on ΣY it preserves the inner product on
ΣY so we can calculate

〈ψ1 ⊗ φ1, ψ2 ⊗ φ2〉
= 〈φ1, 〈ψ1, ψ2〉E · φ2〉,

=

∫
Y

〈φ1(y),Λ(y)ψ1(̃ı−1(y))ψ2(̃ı−1(y))φ2(y)〉ΣY dy,

=

∫
X×(−ε,ε)

Λ(x, s)〈ψ1(x, s)φ1(̃ı(x, s)), ψ2(x, s)φ2(̃ı(x, s))〉ΣY
√

det gY (x, s) dx ds,

=

∫
X×(−ε,ε)

〈ψ1(x, s)φ1(̃ı(x, s)), ψ2(x, s)φ2(̃ı(x, s))〉ΣY |ı(X)

√
det gY (x, 0) dx ds,

= 〈U(ψ1 ⊗ φ1), U(ψ2 ⊗ φ2)〉.

With this unitary in hand we take the �rst step towards computing the product
ıε! ⊗ [Y ] by the formulas outlined in De�nition 1.1.25. In the following computations of
unbounded operators we do not mention their domains. These will be �xed in the next
section, after we have found their formal descriptions.

Lemma 2.3.2. Under the unitary transformations from Lemma 2.3.1, appropriately ex-
tended by the identity transformation, the product operators of ıε! ⊗ [Y ] are

If n is even:

U (S ×∇E (DY ⊗ σ2))U∗ = f ⊗ σ1 + icY (∂s)

(
DX• +∇ΣY

∂s
+

1

2Λ
[DX• ,Λ]

)
⊗ σ2

as operator on L2 (π∗ΣX)⊗ C2.

If n is odd:

U (S ×∇E DY )U∗ = ieγ⊗f+γ⊗icY (∂s)

((
D+
X•
⊕D−X•

)
+∇ΣY

∂s
+

1

2Λ

[(
D+
X•
⊕D−X•

)
,Λ
])

as operator on ClL⊗L2
(
π∗
(
Σ+
X ⊕ Σ−X

))
.

Proof. We start with n even and the 1 ⊗∇E (DY ⊗ σ2) term. Let ψ ⊗ φ ∈ E ⊗C0(Y )⊗Cl1
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L2(ΣY ⊗ C2) and abbreviate DY ⊗ σ2 for now by D, then

U(1⊗∇ED D)(ψ ⊗ φ) = U
(
γ(ψ)⊗Dφ+∇ED(ψ)φ

)
,

= U

(
γ(ψ)⊗Dφ+

(
1⊗ [D,ψ] + γ(ψ)⊗ 1

2Λ
[D,Λ]

)
φ

)
,

= γ(ψ)Dφ+ [D,ψ]φ+ γ(ψ)
1

2Λ
[D,Λ]φ,

= Dψφ+
1

2Λ
[D,Λ]ψφ,

=

(
D +

1

2Λ
[D,Λ]

)
U(ψ ⊗ φ),

=

(
DY ⊗ σ2 +

1

2Λ
[DY ,Λ]⊗ σ2

)
U(ψ ⊗ φ).

where in the third line we use that the action of E on ΣY ⊗ C2 is compatible with
the extension of U by identity to the tensor factors. In the fourth line we use that
[D,ψ] = Dψ − γ(ψ)D is a graded commutator and that the action of Cl1 on ΣY ⊗ C2

graded commutes with the σ2 hidden in D.

Using Proposition 2.1.12 to write DY in terms of DX and II we can further evaluate
this operator.

U(1⊗∇ED D)U∗ = DY ⊗ σ2 +
1

2Λ
[DY ,Λ]⊗ σ2,

= icY (∂s)

(
DX• −

1

2
Tr(II) +∇ΣY

∂s
+

1

2Λ
[DX• ,Λ] +

1

2Λ
[∇ΣY

∂s
,Λ]

)
⊗ σ2,

= icY (∂s)

(
DX• +∇ΣY

∂s
+

1

2Λ
[DX• ,Λ]

)
⊗ σ2

using Lemma 2.1.7.

The S ⊗ 1 term is easier, there we obtain with the same techniques

U(S ⊗ 1)(ψ ⊗ φ) = U(Sψ ⊗ φ),

= U(feψ ⊗ φ),

= feψφ,

= (f ⊗ σ1)U(ψ ⊗ φ)

since e acts on the C2 component of L2(ΣY ⊗ C2) by σ1.

Now for n odd, we follow the same procedure. Let (ψα) ⊗ φ ∈ E ⊗C0(Y ) L
2(ΣY ) for

some α ∈ ClL, and let the extension of U map into ClL⊗L2(π∗ΣY |ı(X)) leaving the ClL
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component inert.

U(1⊗∇ED DY )(ψα⊗ φ) = U
(
γ(ψα)⊗DY φ+∇EDY (ψ)φ

)
,

= U

(
ψγ(α)⊗DY φ+

(
γ(α)⊗ [DY , ψ]φ+ ψγ(α)⊗ 1

2Λ
[DY ,Λ]φ

))
,

= γ(α)⊗
(
ψDY φ+ [DY , ψ]φ+

1

2Λ
[DY ,Λ]ψφ

)
,

= γ(α)⊗
(
DY ψφ+

1

2Λ
[DY ,Λ]ψφ

)
,

=

(
γ ⊗

(
DY +

1

2Λ
[DY ,Λ]

))
U(ψα⊗ φ),

so that

U(1⊗∇ED DY )U∗ = γ ⊗
(
DY +

1

2Λ
[DY ,Λ]

)
,

= γ ⊗ icY (∂s)

((
D+
X•
⊕D−X•

)
+∇ΣY

∂s
+

1

2Λ

[(
D+
X•
⊕D−X•

)
,Λ
])

.

And �nally we get in the odd case

U(S ⊗ 1)U∗ = ieγ ⊗ f.

The �nal step before the product operators reach their �nal form is to twist the
various Cl1 and C2 components. This will allows us to recognize DX (or DX ⊗ σ2) and
T in the product operator.

Lemma 2.3.3. There exist unitary transformations Ue, Uo : C2 ⊗ C2 → C2 ⊗ C2 such
that the induced transformations on operators send

Ue

1⊗ σ1 7→ −σ3 ⊗ σ2,

σ1 ⊗ σ2 7→ σ2 ⊗ 1,

σ2 ⊗ σ2 7→ −σ1 ⊗ 1,

σ3 ⊗ σ2 7→ σ3 ⊗ σ1,

1⊗ σ3 7→ σ3 ⊗ σ3.

Uo

σ2 ⊗ 1 7→ −σ3 ⊗ σ2,

σ3 ⊗ σ2 7→ σ2 ⊗ 1,

σ3 ⊗ σ1 7→ σ3 ⊗ σ1,

σ3 ⊗ σ3 7→ σ3 ⊗ σ3,

σ1 ⊗ 1 7→ σ1 ⊗ 1.

Proof. Using the isomorphism

A⊗B ↔
(
Ab11 Ab12

Ab21 Ab22

)
we have

Ue =


i 0 0 0
0 0 0 i
0 0 1 0
0 −1 0 0
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as a straightforward, albeit lengthy, check shows.
For Uo the �xed points make an abstract formula reasonable,

Uo =
1√
2

1⊗ 1 +
i√
2
σ1 ⊗ σ2

another straightforward but lengthy check shows that Uo does what we claim.
The formula for Uo can be derived by writing Uo = aijσi ⊗ σj with summation over

i, j and σ0 = 1. Then the �xed points imply that U0 commutes with those elements, this
leaves only a00 and a12 possibly non-zero and they are �xed up to a common phase by
either of the remaining conditions. A similar formula exists for Ue but with the lack of
�xed points the computations are easier with matrices.

It is perhaps worth noting that Ue,o are over-determined. The product of all �ve
operators in both cases gives a scalar multiple of the identity, which is always a �xed
point. This �internal orientation� relation is the reason for the mistake noted in [63, Rem.
3.1]

These unitaries rotate all spinor components into the right setting to recognize [X]
and [1]. The order of the conditions in Lemma 2.3.3 is not arbitrarily chosen, they are
in the same order as they are used in the following proposition.

Proposition 2.3.4. There are unitary transformations V so that in a Fermi frame for
the respective spinor bundles

If n is even:

V (S ×∇E (DY ⊗ σ2))V ∗ =

(
DX• +

1

2Λ
[DX• ,Λ]

)
+ γT

as operator on the Hilbert C(X)-C bimodule L2 (π∗ΣX ⊗ C2) with grading γ⊗σ3 =
cY (∂s)⊗ σ3.

If n is odd:

V (S ×∇E DY )V ∗ =

(
D+
X•
⊗ σ2 +

1

2Λ

[
D+
X•
⊗ σ2,Λ

])
+ γT

as operator on the Hilbert C(X)⊗Cl1-C bimodule L2
(
Σ+
X ⊗ C2 ⊗ C2

)
with grading

γ ⊗ σ3 = 1⊗ σ3 ⊗ σ3.

Here, for Σ = ΣX or ΣX ⊗ C2 where appropriate,

T : Γ∞c (π∗Σ⊗ C2)→ L2(π∗Σ⊗ C2)

ψ ⊗ v 7→ i
∂

∂s
ψ ⊗ σ1v − fψ ⊗ σ2v.

Proof. The �rst simpli�cation we can make is that in a Fermi frame, by Lemma 2.1.4,
the covariant derivative ∇ΣY

∂s
= ∂

∂s
.

For n even we are working on the space L2(π∗ΣX)⊗C2 with grading 1⊗σ3, since the
grading comes entirely from the C2 = ClR⊗Cl1C2 component. Split ΣX = Σ+

X ⊕ Σ−X
∼=
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Σ+
X ⊗ C2 into the eigenspaces of cY (∂s). The Cli�ord action of TXs de�ned in Lemma

2.1.9 anticommutes with cY (∂s), so in this frame DX• acts o�-diagonal.
In this frame the operator we have at the end of Lemma 2.3.2 looks like (using Lemma

2.1.4 for ∇ΣY
∂s

),

f ⊗ σ1 + iσ3

((
0 DX• |Σ−X

DX•|Σ+
X

0

)
+

∂

∂s
+

1

2Λ

[(
0 DX•|Σ−X

DX• |Σ+
X

0

)
,Λ

])
⊗ σ2,

with grading 1⊗ σ3. Then the unitary Ue from Lemma 2.3.3 transforms this into

−σ3f ⊗ σ2 +

(
0 DX•|Σ−X

DX• |Σ+
X

0

)
⊗ 1 + σ3

∂

∂s
⊗ σ1 +

1

2Λ

[(
0 DX• |Σ−X

DX•|Σ+
X

0

)
,Λ

]
⊗ 1

with grading σ3 ⊗ σ3. Rewriting Σ+
X ⊕ Σ−X as ΣX gives the representation we are after.

For n odd we have the operator

ieγ ⊗ f + γ ⊗ icY (∂s)

((
D+
X•
⊕D−X•

)
+∇ΣY

∂s
+

1

2Λ

[(
D+
X•
⊕D−X•

)
,Λ
])

acting on ClL⊗L2
(
π∗
(
Σ+
X ⊕ Σ−X

))
. Let Cl1 ∼= C2 by sending 1 to

(
1
0

)
and the generator

e to

(
0
1

)
and choose a Fermi frame in which cY (∂s) = σ1 on Σ+

X⊕Σ−X . Then, by Remark

2.1.10 (see also Example 2.1.14), we get

σ2 ⊗ f + σ3 ⊗
(
D+
X•
⊗ σ2

)
+ σ3 ⊗

(
i
∂

∂s
⊗ σ1

)
+ σ3 ⊗

(
1

2Λ

[
D+
X•
,Λ
]
⊗ σ2

)
so that Uo from Lemma 2.3.3, together with

V :C2 ⊗ L2
(
π∗Σ+

X ⊗ C2
)
→ L2(π∗Σ+

X ⊗ C2 ⊗ C2)

v ⊗ ψ ⊗ w 7→ ψ ⊗ w ⊗ v
yields (

D+
X•
⊗ σ2 ⊗ 1 +

1

2Λ

[
D+
X•
⊗ σ2 ⊗ 1,Λ

])
+ (1⊗ σ3 ⊗ 1)T

with the Pauli matrices in T acting on the third component, as desired.

Example 2.3.5. For the embeddings Sn ↪→ Rn+1 this formula simpli�es a bit further
since DSn• = 1

s+1
DSn. If n is even we get

S ×∇E (DY ⊗ σ2) = DSn ⊗
1

s+ 1
+ γ ⊗ T

acting on L2(ΣSn)⊗ L2 ((−ε, ε),C2). The term

1

2Λ
[DSn• ,Λ] = 0

since Λ = 1
rn

so the spherical derivatives vanish.
These e�ects are related: if DXs = f(s)DX0 we have Λs = f(s)n but the converse

is not true. If, for example, we consider the metric on R3 with, for z > 0, g(x, y, z) =
diag(1

z
, z, 1) with R2 embedded at z = 1 the volume form of R2

s is constant, but DR2
s

=
(s+ 1)σ1∂x + 1

s+1
σ2∂y.
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2.3.2 The product is a KK-cycle

The goal of this section is to establish that

ıε! ⊗ [Y ] =
(
L2
(
π∗ΣX ⊗ C2

)
, S ×∇E DY

)
de�nes an unbounded C(X)-C KK-cycle, or in other words, a spectral triple. To get
this we need to establish that S ×∇E DY is self-adjoint and has compact resolvent.

The usual approach described at the end of Section 1.1.4 does not quite work. This
is because the operator 1 ⊗∇E DY is not self-adjoint, as it lacks appropriate boundary
conditions on the boundary of ı̃(X × (−ε, ε)). We can still use much of the same theory
by instead working with the unitary equivalent formulation from Proposition 2.3.4 where
the two parts form a weakly graded commuting pair in the sense of De�nition 1.1.28.

Let us make some notational remarks before we start. In an e�ort to shorten the
expressions in this section we write

A• :=
1

2Λ
[DX• ,Λ] ,

or with D+
X•
⊗ σ2 ⊗ 1 if n is odd. Additionally, almost everything in this section is

essentially the same for n even and n odd. With this in mind and again to simplify the
expressions we also introduce

D1 =

{
DX• + A•, n is even,
D+
X•
⊗ σ2 ⊗ 1 + A•, n is odd,

D2 = γT

and we will simply write Σ for both ΣX and for Σ+
X ⊗ C2.

The following lemma turns out to be quite useful. It is essentially an incarnation of
the local-global principle [56, 36].

Lemma 2.3.6 (Lemma 1.15 in [60]). Suppose {Ds}s∈(−ε,ε) is a family of self-adjoint
operators on a Hilbert space H such that there is a common core H ⊂ H for all Ds and
for all ψ ∈ H the map s 7→ Dsψ is continuous. Then the operator D• on the Hilbert
C ((−ε, ε))-module C ((−ε, ε), H) is regular and self-adjoint.

Lemma 2.3.7. The operator D1 is essentially self-adjoint on the domain Dom(D1) =
H1(Σ)⊗alg L2 ((−ε, ε),C2) ⊂ L2 (π∗Σ⊗ C2).

Proof. Let us �rst establish that D1 is symmetric. Assume for now that n is even, if n is
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odd nothing material changes. Let ψ, φ ∈ Dom(D1), then

〈D1ψ, φ〉 =

∫
X×(−ε,ε)

〈DXsψ(x, s) + Asψ(x, s), φ(x, s)〉 dωX(x) ds,

=

∫
X×(−ε,ε)

〈DXsψ +
1

2Λ
[DXs ,Λ]ψ, φ〉Λ dωXs(x) ds,

=

∫
X×(−ε,ε)

〈DXsψ +
1

2Λ
[DXs ,Λ]ψ,Λφ〉 dωXs(x) ds,

=

∫
X×(−ε,ε)

〈ψ,
(
DXs −

1

2Λ
[DXs ,Λ]

)
Λφ〉 dωXs(x) ds,

=

∫
X×(−ε,ε)

〈ψ,Λ
(
DXs +

1

2Λ
[DXs ,Λ]

)
φ〉 dωXs(x) ds,

=

∫
X×(−ε,ε)

〈ψ,
(
DXs +

1

2Λ
[DXs ,Λ]

)
φ〉 dωX(x) ds,

= 〈ψ,D1φ〉,

where the key idea is that DXs is symmetric on L2(ΣXs) and we also use that As is a
skew-adjoint endomorphism-valued function.

To get essential self-adjointness we use Lemma 2.3.6. For each �xed s the operator
DXs +As is a symmetric, elliptic, �rst order di�erential operator and as such self-adjoint
on H1(Σ ⊗ C2). We get the continuity of s 7→ DXsψ + Asψ by the smoothness of the
coe�cients of DXs and As. This means that the operator DX• +A• on C ((−ε, ε), L2(Σ))
is regular and self-adjoint.

From there we also get that (DX• + A•) ⊗ 12 on C ((−ε, ε), L2(Σ⊗ C2)) is regu-
lar and self-adjoint. The �nal step is to get from C0 ((−ε, ε), L2 (Σ⊗ C2)) to L2(Σ) ⊗
L2 ((−ε, ε),C2) which follows by taking the internal tensor product with the unbounded
C0 ((−ε, ε))-C KK-cycle (L2 ((−ε, ε),C2) , 0) by Lemma 1.1.29.

Then �nally use that L2(Σ)⊗L2 ((−ε, ε),C2) is unitarily equivalent to L2 (π∗Σ⊗ C2).

The di�cult in proving self-adjointness of D1 lies in the fact that D1 is not an ele-
mentary tensor product of operators under the isomorphism L2(π∗Σ ⊗ C2) ∼= L2(Σ) ⊗
L2 ((−ε, ε),C2). In other words, it does not split into two nicely separated x and s de-
pendent parts. In the example of Sn ↪→ Rn+1 this is the case, see Example 2.3.5, but in
general we do not have this factorization for D1. We do have this for D2, so the proof
for self-adjointness is much shorter.

Another way of analysing D1 is through the concept of tangential ellipticity [41], but
we use the above approach since it prepares us better for the future analyses.

Lemma 2.3.8. The operator D2 is essentially self-adjoint with domain Dom(D2) =
Γ∞(Σ)⊗alg C∞c ((−ε, ε),C2).

Proof. Notice that under the isomorphism L2(π∗Σ ⊗ C2) ∼= L2(Σ) ⊗ L2 ((−ε, ε),C2),
D2 = γ ⊗ T . Here we use the symbol T for both the operator on L2 ((−ε, ε),C2) as well
as the operator on L2 (π∗Σ⊗ C2).
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By Corollary 2.2.5 we have that T is essentially self-adjoint on C∞c ((−ε, ε),C2) so
γ ⊗ T is then essentially self-adjoint as well (see for example [58, Thm. VIII.33]). This
then translates back to γT on L2 (π∗Σ⊗ C2) with domain Γ∞c (π∗Σ⊗ C2).

Since D1 and D2 are essentially self-adjoint on the domains de�ned in Lemmas 2.3.7
and 2.3.8 they have self-adjoint closures. From here on we use D1 and D2 to refer to
those self-adjoint closures. With this in mind we are ready for the main workhorse of
this section.

Proposition 2.3.9. The pair (D1, D2) is a pair of weakly graded commuting operators.

Proof. By De�nition 1.1.28 we need to show that the graded commutator of D1 and D2

is relatively bounded and that there is a D1-compatible core for D2 or, symmetrically, a
D2-compatible core for D1.

Let us answer this second point �rst. Consider E = Γ∞c (π∗Σ⊗ C2), by Lemma 2.3.7
this is a core for D1. By Lemma 2.2.3, and smoothness of the functions Iλ appearing
therein, we get that

(D2 − λi)−1ψ(x, s) = −iσ1Iλ(s)

∫ s

−ε
Iλ(t)ψ(x, t) dt

so that (D2 − λi)−1 preserves E.
Now let us consider the graded commutator. Since both D1 and D2 are odd operators

this is really the anticommutator, so we compute

D1D2 +D2D1 = D1 (γ ⊗ T ) + (γ ⊗ T )D1,

= −γD1 (1⊗ T ) + γ (1⊗ T )D1,

= −γ (D1 (1⊗ T )− (1⊗ T )D1) ,

so we get the regular commutator of D1 with 1⊗ T = 1⊗
(
i ∂
∂s
σ1 − ifσ2

)
.

Multiplication by f , which is a function depending only on s, commutes withDX•+A•
so this commutator becomes

(γ ⊗ iσ1)

(
∂D1

∂s

)
.

We once again use the localized properties of D1, for each �xed s ∈ (−ε0, ε0) the operator
∂D1

∂s
is a �rst-order di�erential operator (its symbol is the s-derivative of the family of

symbols for D1), so that by Gårding's inequality there is some constant Cs such that∥∥∥∥∂DXs + As
∂s

(DXs + As + i)−1

∥∥∥∥ ≤ Cs

and we can actually choose Cs smoothly in s since the operator DXs + As depends
smoothly on s. This means that Cs attains a maximum on [−ε, ε] ⊂ (−ε0, ε0) and for
C = sups∈(−ε,ε) Cs this means that

‖[D1, D2]ψ‖2 ≤ 2C2
(
‖ψ‖2 + ‖D1ψ‖2

)
.



44 Chapter 2. Immersions between spectral triples

Proposition 2.3.10. The operator D1 +D2 is self-adjoint on Dom(D1)∩Dom(D2) and
has compact resolvents.

Proof. Self-adjointness on the given domain follows immediately from Theorem 1.1 since
(D1, D2) is a weakly graded commuting pair.

To get compact resolvents we can show that the domain is compact. We know for
D1, from Lemma 2.3.7, that Dom(D1) ⊂ H1(ΣX) ⊗ L2 ((−ε, ε),C2). Similarly we know
for D2, from Proposition 2.2.7, that Dom(D2) ⊂ L2(ΣX)⊗H1 ((−ε, ε),C2).

This means that any function ψ in the domain of D1 + D2 has weak derivatives
tangential to X and weak derivatives in the s direction as well. So ψ is in the inverse
image of H1(π∗ΣX ⊗ C2) under the unitary transformation

U :L2 (ΣX)⊗ L2
(
(−ε, ε),C2

)
→ L2(π∗ΣX ⊗ C2)

U(ψ ⊗ φ)(x, s) = ψ(x, s)⊗ φ(x, s).

This means that the resolvent (D1 +D2 + i)−1 factors through H1(π∗ΣX ⊗C2), so by the
Rellich embedding theorem it is compact.

This means that, for n even,(
C(X), L2

(
π∗ΣX ⊗ C2

)
, S ×∇E (DY ⊗ σ2)

)
(2.13a)

and, for n odd, (
C(X)⊗ Cl1, L

2
(
Σ+
X ⊗ C2 ⊗ C2

)
, S ×∇E DY

)
(2.13b)

are spectral triples. So the construction of the unbounded product ıε! ⊗ [Y ] is successful.
But now comes the question of whether this product cycle tells us anything about the
geometry of ı : X ↪→ Y .

2.4 Recovering the embedded manifold

We start this section by verifying that our product is sensible in the world of KK-theory.
To do this we use an unbounded homotopy as in [60] to relate [X]⊗ [1] and ıε! ⊗ [Y ]. Even
though this homotopy is formulated at the unbounded level, it discards the geometric
information contained in the immersion because the unbounded homotopies generate the
regularKK-groups. To recover the geometric information we instead study the behaviour
of our product as ε shrinks and explain geometrically why this preserves the geometric
information contrary to the unbounded homotopy.

2.4.1 At the level of KK-theory

Let us start with the role of [1] = (L2 ((−ε, ε),C2) , T ). In Section 2.2.3 we have shown
that the operator T has index 1. Since KK0(C,C) ∼= Z via the index map [8, Prop.
18.8.1] this means that [1] represents the multiplicative unit. So, in KK0(C(X),C), the
classes [X] and [X]⊗ [1] represent the same element. Thus our goal is to show that our
candidate representatives, Equations 2.13a and 2.13b, for ıε! ⊗ [Y ] represent [X]⊗ [1].
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To show that the product spectral triples in Equation 2.13 and the unbounded cycle
for the product [X] ⊗ 1 represent the same class in KK0(C(X),C) we construct an
unbounded homotopy in the sense of [60]. Then Theorem B in loc. cit. implies that they
represent the same class in KK0(C(X),C).

An unbounded homotopy between (A(E0)B, D0) and (A(E1)B, D1) consists of an Hilbert
A-C([0, 1], B) bimodule E and unbounded operator D, self-adjoint and regular, such that
A is contained in the closure of all operators T on E that have both bounded commutators
with D and such that D has T -locally compact resolvent. This should be compared to the
usual de�nition of an unbounded KK-cycle, De�nition 1.1.18. There we instead require
a choice of dense subalgebra A ⊂ A such that a ∈ A has bounded commutators with D
and D has a-locally compact resolvents.

In the following we will play fast and loose with the distinctions for n even and n
odd. For the even case the precise statements can be obtained by replacing all ΣY by
ΣY ⊗C2 and DY by DY ⊗ σ2. In the odd the replacements are ΣX by Σ+

X ⊗C2 and DX•

by D+
X•
⊗ σ2. These adjustments lead to no changes in the actual arguments.

Lemma 2.4.1. The Kasparov product [X]⊗[1] is represented by the unbounded KK-cycle(
L2 (ΣX)⊗ L2

(
(−ε, ε)⊗ C2

)
, DX ⊗ 1 + γ ⊗ T

)
.

Proof. This follows from Lemma 1.1.30 since the Kasparov product is over C.

Proposition 2.4.2. The Hilbert C(X)-C([0, 1]) bimodule

C
(
[0, 1], L2 (ΣX)⊗ L2

(
(−ε, ε),C2

))
with operator

D̃ :C ([0, 1],Dom (S ×∇E DY ))→ C
(
[0, 1], L2 (ΣX)⊗ L2

(
(−ε, ε),C2

))(
(D̃ψ)(t)

)
(x, s) = (DXstψ(t)|Xs) (x) + (Astψ(t)|Xs) (x) + (γ ⊗ T )ψ(t)

de�nes an unbounded homotopy between

[X]⊗ [1] =
(
L2 (ΣX)⊗ L2 ((−ε, ε), DX ⊗ 1 + γ ⊗ T )

)
and

ıε! ⊗ [Y ] =
(
L2
(
π∗ΣX ⊗ C2

)
, S ×∇E DY

)
.

Proof. Let us �rst establish that D̃ indeed de�nes an unbounded homotopy. Note that
for each �xed t the operator is given by

D̃t = DXst + Ast + γ ⊗ T

acting on Dom(S ×∇E DY ) ⊂ L2(ΣX) ⊗ L2 ((−ε, ε),C2). So each localization at t is

self-adjoint with the same domain Dom(S ×∇E DY ). Finally t 7→ D̃tψ is continuous for
ψ in the domain since DX• and A• are smooth families of operators. Then Lemma 2.3.6
implies that D̃ is regular and self-adjoint.
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For the resolvents we can go one step further. The symbol of the di�erential operator
D̃t is, in local coordinates (x, s) on X × (−ε0, ε0) given by

σ(D̃t) =
n∑
i=1

ai(x, st)ξi + b(x, st) + γ ⊗ σ1ξs − γ ⊗ fε(s)σ2

for ai, b smooth sections of End(π∗ε0Σ ⊗ C2). Note that the symbol map t 7→ σ(D̃t) is
continuous with respect to the symbol topology (see e.g. [43, Ch. 2]). This implies that

the symbol of (D̃t+ i)−1 is also continuous in t, so that as a degree −1 pseudo-di�erential
operator this is a norm-continuous family of operators [43, Thm. 4.1].

Next we note that the argument from Proposition 2.3.10 implies that for each �xed
t D̃t has compact resolvent. So the norm-continuity in t implies that (D̃ + i)−1 itself
has compact resolvent. So for all adjointable operators T the resolvent of D̃ is T -locally
compact. Therefore we need to establish that C(X) is contained in the closure of all
operators with bounded commutators with D̃.

Since at least the smooth functions have bounded commutator with D̃ and C(X) is
contained in the closure of the smooth functions we get the compatibility between C(X)

and D̃. In fact, we have shown that D̃ de�nes an unbounded KK-cycle which is slightly
stronger than a KK-homotopy as de�ned above.

Finally, to see that D̃ de�nes an homotopy between [X]⊗ [1] and ıε! ⊗ [Y ] we evaluate
the homotopy at the endpoints. This is done by taking the internal product with the
cycles (C([0,1])CC, 0), where for the �rst endpoint g ∈ C([0, 1]) acts by multiplication by
g(0) and for the other endpoint by g(1). This corresponds to evaluating the function in
C([0, 1], L2 (ΣX)⊗ L2 ((−ε, ε),C2)) at 0 or 1 respectively.

For the �rst endpoint, evaluation at 0, we get

D̃ ⊗C([0,1]) 1 = DX0 + A0 + γ ⊗ T = DX ⊗ 1 + γ ⊗ T

as A0 = 0. This is exactly our operator on the product [X]⊗ [1].
For the second endpoint, evaluation at 1, we get

D̃ ⊗C([0,1]) 1 = DX• + A• + γ ⊗ T

which under the isomorphism L2 (π∗ΣX ⊗ C2) ∼= L2 (ΣX) ⊗ L2 ((−ε, ε),C2) gives the
operator S ×∇E DY that we found in Proposition 2.3.4.

Corollary 2.4.3. The unbounded KK-cycle(
L2 (ΣX)⊗ L2

(
(−ε, ε),C2

)
, S ×∇E DY

)
represents the Kasparov product ıε! ⊗ [Y ].

Proof. From the construction in [16] of the shriek classes in the bounded setting it is
clear that the bounded transforms of the spectral triples for [X] and [Y ] give the classes
(ptX)! and (ptY )! as discussed in the introduction to this chapter. By the construction
of ıε! = (E , S) and [16, Prop. 2.8] it is clear that ıε! is an unbounded representative of the
KK(C(X), C0(Y )) class ı! as well.
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So the functoriality of the shriek classes described in Equation 2.1 implies that, in
KK(C(X),C), [X] = ı! ⊗ [Y ]. Hence any unbounded KK-cycle representing [X] in
KK(C(X),C) represents the Kasparov product ι! ⊗ [Y ].

By Proposition 2.4.2 the unbounded KK-cycles corresponding to the spectral triples
for the product, Equation 2.13, are unbounded homotopic to [X] ⊗ [1]. So [60, Thm.
B] tells us that they represent the same class in KK-theory. We get that S ×∇E DY

represents the same class as [X] ⊗ [1], which in turn is the same class as [X] since [1]
represents the multiplicative unit.

In [62] we check that for Sn ↪→ Rn+1 the product construction represents the Kasparov
product using Kucerovsky's criterion [42]. This tool does not work in this case because
the positivity condition can fail, the positivity condition requires

〈ψ, (DX0DX• +DX•DX0)ψ ≥ −k〈ψ, ψ〉

which holds in the case of spheres since then DXs = 1
s+1

DX0 . If DXs is not a scalar
multiple of DX0 the left-hand side can contain various �rst order di�erential operators
that make the lower bound impossible.

2.4.2 At the geometric level

Let us spend a moment to think about what happens geometrically in the homotopy of
Proposition 2.4.2. This homotopy keeps a �xed ε-neighbourhood of X but as t goes to 0 it
stretches the εt neighbourhood of X out to �ll the entire ε neighbourhood. Geometrically
this corresponds to rescaling the radial metric so that ν becomes a length 1

t
vector. Then

the time s �ow along the rescaled tν corresponds to the time ts �ow along ν.
This kills the geometric nature of the immersion, which essentially is about how Xs

changes with s. One way to see this more clearly is by considering the second fundamental
form II from Equation 2.3,

II(x,0)(A,B) = −〈B,∇Y
A(tν)〉

since tν is the new unit normal. As t goes to zero, so does II(x,0).
We do want to isolate X0 somehow from within {Xs}. The way we can do this is

by looking at progressively smaller neighbourhoods of X0, rather than stretching the
metric within a �xed neighbourhood. This is the reason we have de�ned the family of
unbounded KK-cycles {ıε! }ε∈(−ε0,ε0). Throughout this section many objects will labelled
with an ε where up till now they were not to save on visual clutter. For example we now
write

πε :X × (−ε, ε)→ X

(x, s) 7→ x

instead of simply π, because we will be looking at various ε at the same time.
In order to compare the operators on the neighbourhoods of progressively smaller

size we do stretch them out, but this time preserving the geometric information. For this
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purpose we de�ne the maps

Rε :L2
(
π∗εΣ⊗ C2

)
→ L2

(
π∗1Σ⊗ C2

)
(2.14)

(Rεψ) (x, s) =
√
εψ(x, εs),

where Σ can be any vector bundle. In practice it will be either ΣX ⊗C2 or Σ+
X ⊗C2⊗C2

depending on the parity of n. These preserve the geometry by the following lemma.

Lemma 2.4.4. The maps Rε are unitary.

Proof. The Rε are clearly invertible, so we check that they preserve the inner product.
Let ψ, φ ∈ L2 (π∗εΣ)

〈Rεψ,Rεφ〉 =

∫
X×(−1,1)

〈(Rεψ)(x, s), (Rεφ)(x, s)〉 dωX(x) ds,

=

∫
X×(−1,1)

ε〈ψ(x, εs), φ(x, εs)〉 dωX(x) ds,

=

∫
X×(−ε,ε)

〈ψ(x, t), φ(x, t)〉 dωX(x) dt,

= 〈ψ, φ〉.

We want to know how the operator Sε ×∇E DY transforms under Rε. We compute
this in two steps starting with Tε.

Lemma 2.4.5. The map RεTεR
∗
ε : Γ∞c (π∗1Σ)→ L2 (π∗1Σ) transforms as

RεTεR
∗
ε =

1

ε
T1.

Proof. This is a straightforward computation, let ψ ∈ Γ∞c (π∗1Σ)

(RεTεR
∗
εψ) (x, s) =

√
ε(TεR

∗
εψ)(x, εs),

=
√
ε

(
iσ1

d

ds
(R∗εψ)− σ2fε(εs)(R

∗
εψ)

)
(x, εs),

=
√
ε

(
iσ1

1√
ε

d

ds

∣∣∣∣
(x,εs)

(
ψ

(
x,

1

ε
s

))
− σ2

π

2ε
tan
(πεs

2ε

) 1√
ε
ψ(x, s)

)
,

= iσ1
1

ε
ψ′(x, s)− σ2

1

ε

π

2
tan
(πs

2

)
ψ(x, s),

=
1

ε
(T1ψ) (x, s).

And next up is the behaviour of a family of operators.
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Lemma 2.4.6. Let {As}s∈(−ε,ε) be a family of operators on L2(Σ). Then

RεA•R
∗
ε = Aε•.

where

Aε• :L2(π∗1Σ)→ L2(π∗1Σ)

(Aε•ψ) (x, s) = (Aεsψ|Xs) (x).

Proof. This is again a straightforward computation. Let ψ ⊗ φ ∈ L2(π∗1Σ), then

(RεA•R
∗
εψ) (x, s) =

√
ε (A•(R

∗
εψ)) (x, εs),

=
√
ε (Aεs (R∗εψ) |Xεs) (x),

= (Aεsψ|Xs) (x).

Combining Lemmas 2.4.5 and 2.4.6 and applying them to Sε ×∇E DY we get for n
even

Rε (Sε ×∇E (DY ⊗ σ2))R∗ε =

(
DXε• +

1

2Λ
[DXε• ,Λ]

)
+

1

ε
γT1 (2.15a)

and for n odd

Rε (Sε ×∇E DY )R∗ε =

(
D+
Xε•
⊗ σ2 +

1

2Λ

[
D+
Xε•
⊗ σ2,Λ

])
+

1

ε
γT1 (2.15b)

So when restricting to ever smaller neighbourhoods as ε goes to zero we get a singular
term γ⊗ 1

ε
T . We actually do get the useful asymptotics as ε goes to zero, by subtracting

the known singular part.

Lemma 2.4.7. For the family {As} of operators on L2(ΣX)

As =
1

2Λ|Xs
[DXs ,Λ|Xs ]

we have that Aε• converges to 0 in the operator norm on L2(π∗1ΣX) as ε→ 0.

Proof. Recall from Equation 2.2 that Λ is the change of volume function so that Λ is the
smooth function with Λ|XsωXs = ωX . Now from this relation it is clear that Λ|X0 ≡ 1, so
[DX0 ,Λ|X0 ] ≡ 0. By compactness of X we can �nd ε small enough that [DXs ,Λ|Xs ] and

1
Λ|Xs

are arbitrarily small and close to 1, respectively, for s ∈ (−ε, ε).

Proposition 2.4.8. For ψ ∈ Γ∞c (π∗1ΣX ⊗ C2) and ε < ε1 < ε0 we have for n even∥∥∥∥(Rε(Sε ×∇E (DY ⊗ σ2))R∗ε −
1

ε
γT1 −DX

)
ψ

∥∥∥∥ ≤ Cε(‖ψ‖+ ‖ψ‖1)

for some C > 0 depending only on ε1. Here DX acts on π∗1ΣX as the constant family
{DX} and ‖ψ‖1 = ‖ψ′‖L2. For n odd we get∥∥∥∥(Rε(Sε ×∇E DY )R∗ε −

1

ε
γT1 −D+

X ⊗ σ2

)
ψ

∥∥∥∥ ≤ Cε(‖ψ‖+ ‖ψ‖1).
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Proof. The proofs for the even and odd cases are essentially identical, so we will do the
proof in even case. By Equation 2.15a we need to show for ψ ∈ Γ∞c (π∗1ΣX ⊗ C2) that

‖(DXε•ψ + Aε•ψ −DXψ)‖ ≤ Cε(‖ψ‖+ ‖ψ‖1).

Lemma 2.4.7 allows us to conclude this if we were to prove

‖(DXε•ψ −DXψ)‖ ≤ Cε(‖ψ‖+ ‖ψ‖1).

In local coordinates (x1, . . . , xn, s) on X × (−ε, ε) we can write

(DXε•ψ) (~x, s) = Bi(gXs(~x))
∂ψ

∂xi
(~x, s) +B(gXs(~x))ψ(~x, s)

for endomorphisms B,Bi of ΣX that depend smoothly on gXs(~x) for s ∈ (−ε0, ε0). Let
C be an upper bound for B(gXs(~x)), Bi(gXs(~x)) and their s-derivatives over the compact
space X × [−ε1, ε1]. Then, by the intermediate value theorem for operators, we get the
desired ‖(DXε•ψ −DXψ)‖ ≤ Cε(‖ψ‖+ ‖ψ‖1).

We can reformulate the above proposition as the following asymptotic expansion.

Theorem 2.1. We have the asymptotic expansion for ε→ 0

Rε (Sε ×∇E DY )R∗ε ∼
1

ε
γT +DX +O(ε)

in the �rst Sobolev norm.

In this �zooming in� scheme we do recover curvature data, as opposed to the stretching
approach discussed at the start of this section.

Proposition 2.4.9. The curvature of ιε! converges to −1
4

Tr(II0) as ε→ 0.

Proof. By Lemma 2.2.2 the curvature of ιε! is(
∇EDY

)2
=

(
1

4Λ
[DX• ,Λ]2 − 1

4
Tr(II•)

2

)
so that Lemma 2.4.7 shows that it converges to−1

4
Tr(II•)

2 as operator on L2 (π∗1ΣX ⊗ C2)

The conclusion we draw here is that we can recover DX (or DX ⊗ σ2 in the odd
case) from the family of unbounded KK-cycles ıε! as the constant term in the ε → 0
limit. Moreover, we can recover the square of the mean curvature from this family
of unbounded KK-cycles as well. Geometrically this comes down to zooming in to
increasingly narrow neighbourhoods of X but without changing the metric as we did in
the homotopy approach in Proposition 2.4.2. This ever smaller neighbourhood will still
increasingly resemble X × (−ε, ε), but by reducing the distances over which the metric
can change instead of slowing the rate of change itself.
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Example 2.4.10. For the spheres Sn ↪→ Rn+1 we can explicitly write down these ε
products zoomed in to π∗1ΣSn. Recall from Example 2.3.5 that the product with ıε! is given
by the operator

DSn ⊗
1

s+ 1
+ γ ⊗ Tε

on L2 (ΣSn)⊗ L2 ((−ε, ε),C2).
On L2 (ΣSn)⊗ L2 ((−1, 1),C2), expanded by Rε, this becomes

DSn ⊗
1

εs+ 1
+ γ ⊗ 1

ε
T1

so

‖DSnψ −DSnε•ψ‖ ≤
∣∣∣∣1− 1

1− ε

∣∣∣∣ ‖DSnψ‖ =
ε

1− ε
‖DSnψ‖ → 0.

Now DSn is bounded in the Sobolev norm, so this yields the desired estimate.

This concludes our present analysis of immersions between manifolds. There are many
questions left unanswered, not least among which how this works for higher codimensions.
For now this is speculation, but I expect our approach to generalize. For a codimensionm
K-oriented immersion I believe one can construct a family of tangential Dirac operators
for s ∈ Dm with Dm an m-dimensional disk. This gives rise to tangential, radial and
spherical directions, in which one should �nd DXs , T and some spherical operator such
that T and this spherical part together will play the role of [1].

Another future project is to make the analysis in this Chapter more abstract, in the
direction of [50]. The main goal of this project would be formulating the various domains
more carefully in terms of the relevant operators, rather than simply relying on the
smooth functions to solve the analytical problems. This would lead the way to looking
for abstract criteria that can identify a family of correspondences as an immersion.



Chapter 3

Spectral Densities

This chapter is dedicated to the techniques required to analyze the model in Chapter
4. Throughout we will routinely use terminology from general random matrix theory.
Much of this terminology is in Section 1.2 for unfamiliar readers. We will start in Section
3.1 with establishing some technical results and getting some de�nitions out of the way.
These are necessary for our main results but are separated out of the main proofs of this
section to help with the conceptual �ow of Section 3.2.

In Section 3.2 we do the bulk of the work of this chapter. We generalize existing
techniques for single-trace single-matrix models ([35], see also [22] for a more detailed
explanation) to multi-trace models. We establish existence and uniqueness of a measure
minimizing a speci�c functional and show that the spectral density converges to this
measure in the large-N limit. Next, in Section 3.3, we establish an alternate character-
ization of this minimizing measure that allows us to actually compute this minimizing
measure. Finally in Section 3.4 we present the general principles of using this alternate
characterization in �nding the large-N limit of the spectral density. We will apply these
principles to the model de�ned in Chapter 4 in Section 4.3.

Remark 3.0.1. After proving the generalized version of Theorem 3.3 it was discovered
that this result had already been obtained in [21], however there it was obtained through
di�erent techniques and with slightly stronger assumptions. The main bene�t of our
approach is that the convexity assumptions (Assumption 3.1 point 3 and the setup before
Theorem 3.3) are slightly weaker and allow for more properties of the model, such as
symmetries, to be used.

3.1 Some technical preparation

The goal of this chapter is to prove convergence of certain probability measures, for this
the following notions of convergence and properties will be important. The results in
this section are all classical, and will have similarities to [22, Ch. 6] since this section is
a generalization of the proof therein.

Throughout this chapter let P(R) denote the space of probability measures on R.

De�nition 3.1.1. A sequence {µn} in P(R) converges weakly to µ, denoted µn ⇀ µ, if
for all g ∈ Cb(R) we have

∫
R g dµn →

∫
R g dµ.

52
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De�nition 3.1.2. A sequence {µn} in P(R) converges vaguely to µ, denoted µn
v−→ µ, if

for all g ∈ Cc(R) we have
∫
R g dµn →

∫
R g dµ.

De�nition 3.1.3. A sequence {µn} in P(R) is called tight if for all ε > 0 there is some
R such that for all n we have

∫
|x|>R dµn < ε.

The three concepts de�ned above come together in the following crucial proposition.

Proposition 3.1.4. A tight sequence of probability measures has a weakly (thus also
vaguely) convergent subsequence whose limit is a probability measure.

Proof. Say we have a sequence of probability measures {µn} in P(R). We �rst want
to extract a vaguely convergent subsequence. Each µn de�nes a continuous norm 1
linear functional φn on Cc(R), thus by the Banach-Alaoglu theorem {φn} has a weak-∗
convergent subsequence with limit φ (using that Cc(R) is separable). By the Riesz-
Markov theorem φ in turns corresponds to a measure µ on R. Note that µ might not be
a probability measure and may be the null measure.

We claim that the corresponding subsequence of measures converges vaguely to µ.
Indeed, let g ∈ Cc(R) then ∫

R
g dµn = φn(g)→ φ(g) = µ(g).

Let us forget about the original sequence and only focus on the vaguely convergent
subsequence, still denoted {µn}.

Now suppose the sequence of probability measures {µn} is tight (if this held for the
original sequence it clearly holds for a subsequence). We wish to show two more things.
First that the vague limit µ is a probability measure and second that the convergence is
actually weak.

Let ε > 0 and R such that
∫
|x|>R dµn < ε for all n. Let g be a continuous function

with g(x) = 1 for |x| < R and g(x) = 0 for |x| > R + 1, then g ∈ Cc(R) and we have∫
R
g(x) dµn(x) ≥ 1− ε

for all n. So also ∫
R
g(x) dµ(x) ≥ 1− ε.

This holds for all ε, so the total mass of µ is at least 1. Suppose the total mass of µ is
1 + δ for δ > 0. Then we can �nd a function h ∈ Cc(R) of norm 1 with

∫
h dµ = 1 + 1

2
δ.

This contradicts µn
v−→ µ since

∫
h dµn ≤ 1. So the total mass of µ is 1. A very similar

argument shows that µ must be positive. Thus µ is a probability measure.
Moreover it has the same C0-like behaviour as the tight sequence, i.e.

∫
|x|>R dµ < ε

for ε, R from the tightness of {µn}.
Finally, let f ∈ Cb(R). We wish to show that

∫
R f dµn →

∫
R f dµ. Let ε > 0 and R

as before. Then∣∣∣∣∫
R
f dµn −

∫
R
f dµ

∣∣∣∣ ≤ ‖f‖∞ε+

∣∣∣∣∫
|x|<R

f dµn −
∫
|x|<R

f dµ

∣∣∣∣ .
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Since we are free to choose ε we can get the �rst term as small as desired and then we can
pick n large enough such that the second term is as small as desired by vague convergence
on the function f |[−R,R] ∈ Cc(R).

In addition to the above notions of convergence we will need some technical results
that will make sure all our steps in Section 3.2 are well de�ned.

Proposition 3.1.5. If {µn} is a sequence of probability measures and µn ⇀ µ a proba-
bility measure µ, then µ⊗kn ⇀ µ⊗k for k ∈ N.

Proof. Let g : Rk → R be a bounded continuous function. We need to establish that∫
Rk
g(x1, . . . , xk) dµn(x1) . . . dµn(xk)→

∫
Rk
g(x1, . . . , xk) dµ(x1) . . . dµ(xk).

Let ε > 0 and R such that
∫
|x|>R dµ < ε and

∫
|x|>R dµn < ε for all n. This R exists since

for n big enough
∫
|x|>L dµn is arbitrarily close to

∫
|x|>L dµ using weak convergence for

the indicator function on [−L,L].
We can decompose Rk into disjoint subsets by

Rk = [−R,R]k ∪
k−1⋃
j=0

([−R,R])j × ((−∞,−R] ∪ [R,∞))× Rk−j−1

and using this decomposition we get∣∣∣∣∫
Rk
g dµ⊗kn −

∫
Rk
g dµ⊗k

∣∣∣∣ ≤ ∣∣∣∣∫
[−R,R]k

g dµ⊗kn −
∫

[−R,R]k
g dµ⊗k

∣∣∣∣+ 2kε‖g‖∞

since on each of the parts of Rk with a (−∞,−R]∪ [R,∞) component we can bound the
integrand by ‖g‖∞ so that both integrals can separately be bounded by ε‖g‖∞.

On the compact set [−R,R]k we can uniformly approximate g by polynomials, so we
can �nd a polynomial p such that ‖g − p‖∞ < ε this gives us∣∣∣∣∫

[−R,R]k
g dµ⊗kn −

∫
[−R,R]k

g dµ⊗k
∣∣∣∣ ≤ ∣∣∣∣∫

[−R,R]k
p dµ⊗kn −

∫
[−R,R]k

p dµ⊗k
∣∣∣∣+ 2ε

since the error introduced by replacing g by p in both integrals is bounded by the ε times
the integral over [−R,R]k which is less than 1. But for polynomials we clearly have
weak convergence of µ⊗kn → µ⊗k since the integral splits into a sum of products of one
dimensional integrals.

Picking �rst ε small enough and then choosing n large enough we can get the right-
hand side of∣∣∣∣∫

Rk
g dµ⊗kn −

∫
Rk
g dµ⊗k

∣∣∣∣ ≤ ∣∣∣∣∫
[−R,R]k

p dµ⊗kn −
∫

[−R,R]k
p dµ⊗k

∣∣∣∣+ (2 + 2k‖g‖∞)ε

as small as we want. This establishes weak convergence µ⊗kn ⇀ µ⊗k.
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The last two results of this section are a departure from the more general discussions
so far and concern the speci�cs of dealing with logarithmic integrals.

Proposition 3.1.6. If ν is a compactly supported measure on R with
∫
R dν = 0, then

−
∫∫

1

2
log(m2 + (x− y)2) dν(x) dν(y) =

∫ ∞
0

e−|m|u

u
|ν̂(u)|2 du

for m 6= 0.

Proof. This follows from a computation that we copy from [22]. For m > 0

log(m2 + s2) = log(m2) +

∫ s

0

2t

t2 +m2
dt,

= log(m2) + 2=
∫ s

0

i

t+ im
dt,

= log(m2) + 2=
∫ s

0

∫ ∞
0

ei(t+im)u du dt,

= log(m2) + 2=
∫ ∞

0

1

iu
eisu−mu − 1

iu
e−mu du,

= log(m2) + 2=
∫ ∞

0

1− eisu

iu
e−mu du.

For m < 0 one can substitute −m for m starting in the second line.
So far we have creatively used the fundamental theorem of calculus to apparently

complicate an expression. But now note that∫∫
log
(
m2 + (x− y)2

)
dν(x) dν(y) =

∫∫
log(m2) dν(x) dν(y)

+ 2=
∫ ∞

0

∫∫
1− ei(x−y)u

iu
e−mu dν(x) dν(y) du,

= 2=
∫ ∞

0

e−mu

iu

∫
eixu dν(x)

∫
e−iyu dν(y) du

using that
∫
dν = 0. By de�nition

∫
eixu dν(x) = ν̂(u) is the Fourier transform of µ, so

we obtain ∫∫
log
(
m2 + (x− y)2

)
dν(x) dν(y) = −2

∫ ∞
0

e−mu

u
|ν̂(u)|2 du

using that ν is a real measure.

Proposition 3.1.7. If µ, ν are compactly supported probability measures and − log(|x−
y|) is integrable with respect to µ⊗µ and ν⊗ ν then it is integrable with respect to µ⊗ ν.

Proof. Consider the measure ρ = µ− ν with mean 0, so by Proposition 3.1.6 we get

−
∫∫

log
(√

m2 + (x− y)2
)
dρ(x) dρ(y) =

∫ ∞
0

e−mu

u
|ρ̂(u)|2 du.
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Letting m tend to zero we obtain by monotone convergence that

−
∫∫

log (|x− y|) dρ(x) dρ(y) =

∫ ∞
0

|ρ̂(u)|2 du ≥ 0.

Let us consider the left-hand side of this equation, expanding ρ out again we get

−
∫∫

log (|x− y|) dµ(x) dµ(x)−
∫∫

log (|x− y|) dν(x) dν(y)

+

∫∫
log (|x− y|) dµ(x) dν(x) +

∫∫
log (|x− y|) dν(x) dµ(x) ≥ 0,

since log(|x − y|) is bounded above but not below each of these integrals may be −∞.
However we assume that − log(|x− y|) is integrable for µ⊗ µ and ν ⊗ ν so the �rst two
terms are �nite. That means the mixed terms must also be �nite, hence − log(|x− y|) is
integrable with respect to µ⊗ ν and ν ⊗ µ.

3.2 The equilibrium measure

In this section we will establish that the spectral density of a particular type of eigenvalue
model has a large-N limit. For example those coming from a unitarily invariant multi-
trace single-matrix model. We then show that this large-N limit is characterized by a
variational problem. This section, and the proofs therein, are heavily based on [35, 22].
Some proofs carry over with minimal to no changes, but are included to make this text
as self-contained as possible for a broader audience.

In further preparation for this section, de�ne 1

Nk =
{
i ∈ Nk

∣∣ 1 ≤ ij ≤ N ∀1 ≤ j ≤ k
}
, (3.1)

∆k
N =

{
i ∈ Nk

∣∣ ia 6= ib if a 6= b
}

(3.2)

The situation we consider is the following. Let

P β
N(~λ) =

1

ZN
exp

−N2−k
∑
i∈Nk

U(λi1 , . . . , λik) +
β

2

∑
(i,j)∈∆2

N

log |λi − λj|

 dN~λ (3.3)

be a probability distribution on RN , we will call this the eigenvalue model or simply
model if no confusion would arise.

This form of the interaction includes the more common form, seen for example in
[21], where the potential term N2−k∑U is written

N
∑
i∈N1

V1(λi) +
∑

(i,j)∈N2

V2(λi, λj) +
1

N

∑
(i,j,k)∈N3

V3(λi, λj, λk) + . . .

1In this de�nition ∆ should be read as �di�erent� and not �diagonal�.
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up to some �nite interaction order k. This �ts in our framework by symmetrizing, so we
consider the potential U given by

U(λ1, . . . , λk) =
k∑

n=1

1

kn

∑
i∈kn

Vn(λi1 , . . . , λik).

Working with one single function U turns out to be convenient for the proofs and not
much trouble to work with in practice.

Remark 3.2.1. The de�nitions and theorems in this section all assume k ≥ 2. If k = 1
all results remain true, albeit with some minor changes in formulation. The k = 1 case is
also already covered in the sources [35, 22] mentioned before. Alternatively one can use
the symmetrization procedure described above to �upgrade� a non-interacting U (k = 1)
to a trivially interacting U(x, y) = 1

2
V (x) + 1

2
V (y).

To an eigenvalue model from Equation 3.3 we associate an energy functional:

De�nition 3.2.2. The associated energy functional to the model in Equation 3.3 is
de�ned on a k-tuple of measures, (µ1, . . . , µk) ∈M(R)k, with values in R∪{−∞,∞} by

I(µ1, . . . , µk) :=

∫
Rk
W (x1, . . . , xk)

k∏
i=1

dµi(xi).

Here

W (x1, . . . , xk) := U(x1, . . . , xk)−
1

k(k − 1)

∑
(i,j)∈∆2

k

β

2
log(|xi − xj|).

We will most often use the notation

I(µ) := I(µ, . . . , µ),

in which case

I(µ) =

∫
Rk
U(~x) dµ⊗k(~x)− β

2

∫
R2

log(|x− y|) dµ(x) dµ(y).

Our �rst goal will be to prove the following theorem:

Theorem 3.1. Under the assumptions on the eigenvalue model listed below in Assump-
tion 3.1, the minimization problem

inf
µ∈P(R)

I(µ)

of the associated energy functional over the space of probability measures has a unique
solution µE ∈ P(R) and this measure has compact support.

Proof. This is a combination of Propositions 3.2.9, 3.2.10, (existence and uniqueness,
respectively) and Lemma 3.2.6 (compact support) below.
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We will then proceed to show in Theorem 3.2, explicitly in Corollary 3.2.16, that the
spectral density of the eigenvalue model in Equation 3.3 converges to this measure µE.
We then provide an alternate characterization of the minimizer in Theorem 3.3.

Minimizing the associated energy functional is often called an equilibrium problem,
since it is equivalent to �nding the equilibrium distribution of a Coulomb gas. This is an
in�nitely divisible gas with a 1

r
repulsive force, giving the log potential, in an interacting

potential U . With this in mind we call the minimizing measure µE the equilibrium
measure.

By the same analogy with physics we refer to k as the degree as the degree of inter-
action. For a gas that only interacts through a 1

r
repulsive force we recover the problem

in [35, 22], but in our models based on fuzzy geometries we will encounter interactions
of degree 2 due to the presence of multi-trace terms, see Section 4.2.

To obtain Theorem 3.1 we assume the following properties of our eigenvalue model.

Assumption 3.1. U : Rk → R is a continuous function such that:

1. U is invariant under permutation of its arguments.

2. There is a continuous function u : R → R such that U(x1, ..., xk) ≥ u(x1) for all

(xi) ∈ Rk and u(x)− max(β,2)
2

log(1 + x2)→∞ as |x| → ∞.2

3. There is a set of candidate measures Pcan ⊂ P(R) containing all minimizers of I,
such that for any probability measures µ, ν ∈ Pcan and any t ∈ [0, 1]

d2

dt2

∫
Rk
U(~x) d(µ+ t(ν − µ))⊗k(~x) ≥ 0.

Let us further discuss these assumptions, starting with the third and its set of can-
didate measures Pcan. This assumption is new compared to the single-trace case, i.e.
the k = 1 case where it is automatic. It is crucial in showing that the minimizer of I
is unique. The introduction of the set of candidate measures allows us to use a more
relaxed convexity condition than the results for higher level interactions in the literature
[21] that require the problem to be convex everywhere.

For example, the �rst two conditions in the above assumptions guarantee that any
measure µ with I(µ) = +∞ cannot be a minimizer, by Lemma 3.2.4 below, and neither
can a measure with non-compact support be a minimizer by Lemma 3.2.6. So we only
need convexity between measures with I(µ) �nite and compact support.

There are more universal conditions, for example

Lemma 3.2.3. Any minimizing measure µ of I satis�es

I(µ, . . . , µ, ν − µ) ≥ 0

for all ν ∈ P(R) with compact support and I(ν) �nite.

2The proofs in the following can be adapted to max(β, 1 + ε) for some ε > 0, but in practice u will
generally have polynomial growth so we leave it at this simpler assumption.
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Proof. A straightforward calculation, using Proposition 3.1.7 to make sure all integrals
are well-de�ned, shows that

d

dt

∣∣∣∣
t=0

I(µ+ t(ν − µ)) = kI(µ, . . . , µ, ν − µ),

by permutation invariance of I and linearity in each argument. If this derivative is
negative, I(µ+ t(ν − µ)) < I(µ) for t su�ciently small.

More, and more accessible, conditions can come from the particular model under
consideration. For example in the case of our fermionic fuzzy Dirac ensemble in Chapter
4 we show in Lemma 4.3.4 that any minimizer of I for that model must have mean 0. So
we only need to show the convexity condition between measures of mean 0 in Proposition
4.3.5.

The �rst assumption is automatically satis�ed if this probability density originates
from the Weyl integration formula. Since U only appears in a sum over all combinations of
indices this can always be achieved by symmetrizing, similar to how the log-term appears
in the integral over Rk in 3.2.2. It is therefore essentially an empty assumption that
simply avoids us having to symmetrize manually and further clutter already notation-
heavy proofs.

The second assumption plays a key role in showing existence of a minimizer of the as-
sociated functional I by making sure U acts like a con�ning potential for the eigenvalues.
This is required to counteract the inherent repulsive log term.

3.2.1 Existence and uniqueness

We will start by establishing that the associated functional I has a �nite minimum.

Lemma 3.2.4.

inf
µ∈P(R)

I(µ) <∞

Proof. Consider µ = χ[−1,1]dx, then one can compute that∫
R2

log(|x− y|) dµ(x) dµ(y) = log(16)− 6 <∞.

As U : Rk → R is continuous ∫
Rk
U(~x) dµ⊗k(~x) <∞

as well, so I(µ) is �nite.

Now we move on to the real work. We start by showing that the combined potential
W (consisting of U and the log interaction) is suitably con�ning. This then implies that
the equilibrium measure will be compact, but also that any sequence of measures with
�nite energy is tight. Any sequence of measures with particles escaping to in�nity will
have increasing energy due to the con�ning nature of U .
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Lemma 3.2.5. The function W : Rk → R de�ned by (see also De�nition 3.2.2)

W (x1, . . . , xk) = U(x1, . . . , xk)−
1

k(k − 1)

k∑
i,j=1
i 6=j

β

2
log(|xi − xj|)

tends to in�nity as ‖x‖ → ∞.

Proof. A straightforward check by expanding both sides shows that (x − y)2 ≤ (1 +
x2)(1 + y2), so

log(|x− y|) ≤ log
(√

1 + x2
)

+ log
(√

1 + y2
)

and thus

W (x1, . . . xk) ≥ U(x1, . . . , xk)−
1

k(k − 1)

k∑
i,j=1
i 6=j

β

2

(
log

(√
1 + x2

i

)
+ log

(√
1 + x2

j

))
,

= U(x1, . . . , xk)−
1

k

k∑
i=1

β

2
log
(
1 + x2

i

)
,

≥ 1

k

k∑
i=1

(
u(xi)−

β

2
log
(
1 + x2

i

))
.

By Assumption 3.1 each term in this sum tends to in�nity as xi tends to in�nity, so W
tends to in�nity as ‖x‖ tends to in�nity.

At this point we do not yet need the max(β, 2) from Assumption 3.1 yet. That extra
condition will show up in when we need exp(−1

2
u(x)) to be integrable.

Lemma 3.2.6. Any minimizer µ of I has compact support.

Proof. By Lemma 3.2.5 we can �nd R such thatW (x1, x2, . . . , xk) > I(µ)+1 for |x1| > R.
Let D = R \ [−R,R] and consider the probability measures

µ+1 =
µ+ µ|D

1 + µ(D)
,

µ−1 =
µ− µ|D

1− µ(D)
.

As we assume µ is a minimizer this implies by Lemma 3.2.3 that both

I (µ, . . . , µ, µ+1) ≥ I(µ),

I (µ, . . . , µ, µ−1) ≥ I(µ).

Taking a closer look at this �rst inequality, we �nd

I (µ, . . . , µ, µ+ µ|D) ≥ (1 + µ(D))I(µ),

I (µ, . . . , µ, µ|D) ≥ µ(D)I(µ).



3.2. The equilibrium measure 61

The second inequality gives

I (µ, . . . , µ, µ− µ|D) ≥ (1− µ(D))I(µ),

I (µ, . . . , µ,−µ|D) ≥ −µ(D)I(µ).

Together this implies

I (µ, . . . , µ, µ|D) = µ(D)I(µ).

But then we can compute the left hand side and �nd

I(µ, . . . , µ|D) =

∫
Rk
W (~x) dµ|D(x1) dµ⊗k−1(x2, . . . , xk),

≥
∫
Rk
I(µ) + 1 dµ|D(x1) dµ⊗k−1(x2, . . . , xk),

= (I(µ) + 1)µ(D),

as for x1 ∈ D, W (~x) > I(µ) + 1. Therefore µ(D) = 0.

Lemma 3.2.7. If {µn}n∈N is a sequence of probability measures such that I(µn) ≤ C for
some �xed C ∈ R and all n ∈ N, then µn is tight.

Proof. Let ε > 0. By Lemma 3.2.5, W has a lower bound b, w.o.l.o.g. b < 0. Find a B
such that b+ Bε > C, then, again by Lemma 3.2.5, we can �nd R such that if |x1| > R
then W (x1, x2, . . . , xk) > B. We get

C ≥ I(µn) ≥
∫
Rk−1

(∫
|x|<R

b dµn(x) +

∫
|x|>R

Bdµn(x)

) k∏
i=2

dµn(xi) ≥ b+B

∫
|x|>R

dµn(x)

so
∫
|x|>R dµn(x) < ε, this holds independently of n so the sequence {µn} is tight.

Having established that sequences with bounded energy are tight, we only need a
simple continuity result to obtain existence of a minimizer. We then can use Assumption
3.1, in particular point 3, to establish uniqueness.

Lemma 3.2.8. I is lower semi-continuous with respect to weak convergence on P(R).

Proof. Suppose {µn} is a sequence in P(R) weakly converging to the probability measure
µ. For any L ∈ R,

I(µn) ≥
∫
Rk

min(L,W (~x)) dµ⊗kn (~x)→
∫
Rk

min(L,W (~x)) dµ⊗k(~x)

by Proposition 3.1.5. The right-hand side is monotone increasing in L and thus converges
to I(µ) by the dominated convergence theorem.

Proposition 3.2.9. A measure µE minimizing I exists.
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Proof. There exists a sequence of measures µn such that I(µn) converges to E :=
infµ∈P(R) I(µ). By Lemma 3.2.7 this sequence is tight, so by Lemma 3.1.4 it has a
weakly convergent subsequence with a probability measure µE as weak limit. Then
E ≤ I(µE) ≤ lim inf I(µn) = E as by Lemma 3.2.8 I is lower semi-continuous. So
I(µE) = E.

Proposition 3.2.10. If µ, ν satisfy I(µ) = I(ν) = infρ∈P(R) I(ρ), then µ = ν.

Proof. Suppose µ and ν are both minimizers of I. Consider ρt = µ+ t(ν−µ), which is a
probability measure on R for t ∈ [0, 1]. We will show that, unless µ = ν, I(ρt) is strictly
convex. This would contradict the assumption that µ, ν are both minimizers of I.

I(ρt) =

∫
Rk
U(~x)dρ⊗kt (~x)−

∫
R2

log(|x− y|) dρt(x)dρt(y)

The second derivative with respect to t is then

d2

dt2
I(ρt) =

d2

dt2

[∫
Rk
U(~x) dρ⊗kt (~x)

]
+ 2

∫
R2

log(|x− y|−1) d(ν − µ)(x) d(ν − µ)(y).

By Proposition 3.1.6 the integral of the log term is given by

−
∫
R2

log(|x− y|) d(ν − µ)(x) d(ν − µ)(y) =

∫ ∞
0

1

k

∣∣∣ ̂(ν − µ)(k)
∣∣∣2 dk ≥ 0

with equality only if µ = ν (this follows from Fourier inversion for distributions).
The set of candidate minimizers is required to contain the actual minimizers, so by

Assumption 3.1 the second derivative of the U -integral is positive. Thus d2

dt2
I(ρt) ≥ 0,

with equality only if µ = ν. But since I(ρ0) = I(ρ1), this implies I(ρt) attains a strict
minimum for t ∈ (0, 1) unless µ = ν.

3.2.2 Convergence of spectral density

In this section we will show that the spectral density of the eigenvalue model converges
weakly to the equilibrium measure µE of the associated energy functional. In fact, we
will show that the n-point densities converge to (µE)⊗n. As was the case for the previous
section, this section is heavily based on [35, 22].

As a further preface to this section, we expand a little bit on the de�nition of the
function W that de�nes the associated energy functional I. It is designed such that∑

i∈∆k
N
W (xi1 , . . . , xik) gives the exponent of the eigenvalue density (Equation 3.3), at

least to leading order in N . A lot of the work in this section revolves around properly
dealing with the lower order terms, this is especially noticeable in Proposition 3.2.13.
One might hope that by changing the model to be exactly the above sum of W these
proofs can be simpli�ed considerably, but that would no longer correspond to the model
we develop in Chapter 4.

The proofs in this section revolve around the sequence of sets

AN,η =

x ∈ RN

∣∣∣∣∣∣ 1

Nk

∑
i∈∆k

N

W (xi1 , . . . , xik) ≤ (E + η)

 (3.4)
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where E = infµ∈P(R) I(µ).

Lemma 3.2.11. AN,η is compact for all N ∈ N, η ∈ R>0.

Proof. By Lemma 3.2.5, W (~y) tends to in�nity as ‖~y‖ → ∞ so AN,η is bounded. More-
over, (x, y) 7→ log(|x−y|) is continuous as a map R2 → R∪{∞}, hence so is the function
de�ning AN,η. Since AN,η is the inverse image of (−∞, E+η] ⊂ (−∞,∞] it is closed.

The gist of the convergence proof consists of showing that, as you might expect
from the de�nition, points ~x in AN,η have �low energy�. So their associated counting
measures will tend towards minimizers of I (Proposition 3.2.14). It also means that
the probability of �nding the eigenvalues of our model outside of AN,η is exponentially
suppressed (Proposition 3.2.13). These observations combine to prove that the spectral
density is a minimizer of I (Theorem 3.2). First, however, we want to be able to work
with absolutely continuous measures.

Lemma 3.2.12. Let µ ∈ P(R) such that µ has compact support and I(µ) < ∞. Then
for µε := 1

2ε
χ[−ε,ε] ∗ µ we have I(µε)→ I(µ).

Proof. Since µ is assumed to have compact support and U is assumed to be continuous,
Proposition 3.1.5 implies that the �rst integral in

I(µε) =

∫
Rk
U(~x) dµ⊗kε (~x)−

∫
R2

log(|x− y|) dµε(x) dµε(y)

converges to the corresponding integral for µ. Hence we verify convergence of the second
integral.

It is a straightforward check, essentially using the adjoint formula for convolution
operators, that integrating a function with respect to the �smeared� measure µε is equiv-
alent to integrating the smeared function with respect to he original measure (using that
the smearing function is real and symmetric). In other words,∫

R2

log(|x− y|) dµε(x) dµε(y) =

∫
R2

(
1

4ε2

∫∫ ε

−ε
log(|x− s− y + t|) ds dt

)
dµ(x) dµ(y).

This integral is �nite by the assumption that I(µ) <∞.
We now need to investigate this ε-integral as ε→ 0.

1

4ε2

∫∫ ε

−ε
log(|x− s− y + t|) ds dt = log(|x− y|) +

1

4ε2

∫∫ ε

−ε
log

(∣∣∣∣ t− sx− y
+ 1

∣∣∣∣) ds dt,

= log(|x− y|) +
|x− y|2

4ε2

∫∫ ε
|x−y|

− ε
|x−y|

log (|u− v + 1|) du dv.

If we can show that the total �error term� caused by the smearing,∫
R2

(
|x− y|2

4ε2

∫∫ ε
|x−y|

− ε
|x−y|

log (|u− v + 1|) du dv

)
dµ(x) dµ(y),



64 Chapter 3. Spectral Densities

goes to 0 as ε→ 0, we are done.
Doing some basic, if cumbersome, calculus we get

1

4a2

∫∫ a

−a
log(|u− v + 1|) du dv =

1

8a2

∫ 2a

−2a

∫ 2a−|t|

−2a+|t|
log(|s+ 1|) ds dt,

=
1

4a2

∫ 2a

0

∫ 1+2a−t

1−2a+t

log(|s|) ds dt,

=

(
(1 + 2a)2

8a2
log (|1 + 2a|) +

(1− 2a)2

8a2
log (|1− 2a|)

)
− 3

2
.

The limit as a → 0 can be computed to be 0 using L'Hôpital's rule. As a → ∞ the
integral is asymptotic to log(1 + 2a) − 3

2
. Therefore the integral is, in absolute value,

bounded by C log(1 + 2a) for some C. Upon closer inspection one can check that in fact
C = 1 works.

So our total error term is bounded in absolute value by∫
R2

log

(
1 +

2ε

|x− y|

)
dµ(x) dµ(y) =

∫
R2

log(|x− y|+ 2ε)− log(|x− y|) dµ(x) dµ(y).

As log(|x − y|) is integrable with respect to µ⊗2, since I(µ) < ∞ and µ has compact
support, this converges to 0 as ε→ 0.

Proposition 3.2.13. Let PN be an eigenvalue model as in Equation 3.3 and AN,η as in
Equation 3.4. Then, for all η > 0, there exists an N∗ such that for N ≥ N∗, PN(RN \
AN,η+a) ≤ e−aN

2
.

Proof. By Lemma 3.2.12 we can �nd a continuous function φ with compact support such
that the measure µ = φ(x)dx ∈ P(R) and I(µ) ≤ E+ η

4
(take µ to be a �smeared� version

of µE for a su�ciently small ε). Let D = {x ∈ R |φ(x) > 0}.
Set further for notational convenience

SN(~x) := N2−k
∑
i∈Nk

U(xi1 , . . . , xik)−
∑

(i,j)∈∆2
N

β

2
log(|xi − xj|),

= N2−k
∑

i∈Nk\∆k
N

U(xi1 , . . . , xik) +N2−k
∑
i∈∆k

N

U(xi1 , . . . , xik)

− |∆
2
N |

|∆k
N |
∑
i∈∆k

N

1

|∆2
k|

∑
(k,l)∈∆2

k

β

2
log(|xik − xil |),

= N2−k
∑

i∈Nk\∆k
N

U(xi1 , . . . , xik) +

(
N2−k − |∆

2
N |

|∆k
N |

) ∑
i∈∆k

N

U(xi1 , . . . , xik)

+
|∆2

N |
|∆k

N |
∑
i∈∆k

N

W (xi1 , . . . , xik),

= S
(1)
N (~x) + S

(2)
N (~x) + S

(3)
N (~x).
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Then

ZN =

∫
RN

exp (−SN(~x)) dNx,

≥
∫
DN

exp (−SN(~x)) dNx,

=

∫
DN

exp

(
−SN(~x)−

N∑
j=1

log φ(xj)

)
N∏
j=1

φ(xj) dxj,

≥ exp

(∫
DN
−SN(~x)−

N∑
j=1

log φ(xj) dµ
⊗N(~x)

)
,

where the last step follows by Jensen's inequality. Phrasing this more in line with how
we will use it, we have

1

ZN
≤ exp

(∫
DN

S
(1)
N (~x) + S

(2)
N (~x) + S

(3)
N (~x) dµ⊗N +

∫
DN

N∑
j=1

log φ(xj) dµ
⊗N(~x)

)
.

We compute∣∣∣∣∫
DN

S
(1)
N (~x) dµ⊗N(~x)

∣∣∣∣ ≤ ∫
DN

N2−k
∑

i∈Nk\∆k
N

|U(xi1 , . . . , xik)| dµ⊗N(~x),

= N2−k
∑

i∈Nk\∆k
N

∫
DN
|U(xi1 , . . . , xik)| dµ⊗N(~x),

≤ N2−k (Nk − |∆k
N |
)

sup
~x∈Dk

(|U(~x|),

= N2

(
1− |∆

k
N |

Nk

)
sup
~x∈Dk

(|U(~x|),

The supremum is �nite since U is continuous and Dk is compact. Since |∆k
N | = Nk +

O(Nk−1), this means that
∫
DN

S
(1)
N (~x)dµ⊗N is O(N).∫

DN
S

(2)
N (~x) dµ⊗N(~x) =

∫
DN

(
N2−k − |∆

2
N |

|∆k
N |

) ∑
i∈∆k

N

U(xi1 , . . . , xik) dµ
⊗N(~x),

=

(
N2−k − |∆

2
N |

|∆k
N |

) ∑
i∈∆k

N

∫
DN

U(xi1 , . . . , xik) dµ
⊗N(~x),

=

(
N2−k − |∆

2
N |

|∆k
N |

)
|∆k

N |
∫
Dk
U(x1, . . . , xk) dµ

⊗k(~x),

=
(
N2−k|∆k

N | − |∆2
N |
) ∫

Dk
U(x1, . . . , xk) dµ

⊗k(~x).

Both N2−k|∆k
N | and |∆2

N | are N2 + O(N), so also
∫
DN

S
(2)
N (~x) dµ⊗N is O(N) since the

integral is again �nite by the compact support of µ. In this computation we also used
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that, since we are summing over ∆k
N , all the integrals are the same. This did not hold

for S
(1)
N since there are guaranteed to be one or more double indices and this degeneracy

varies between the choices of indices appearing in the sum.
Next ∫

DN
S

(3)
N (~x) dµ⊗N(~x) =

∫
DN

|∆2
N |

|∆k
N |
∑
i∈∆k

N

W (xi1 , . . . , xik) dµ
⊗N(~x),

=
|∆2

N |
|∆k

N |
∑
i∈∆k

N

∫
DN

∑
i∈∆k

N

W (xi1 , . . . , xik) dµ
⊗N(~x),

= |∆2
N |
∫
Dk
W (x1, . . . , xk) dµ

⊗k(~x),

= (N2 −N)I(µ).

And �nally ∫
DN

N∑
j=1

log φ(xj) dµ
⊗N(~x) = N

∫
D

log(φ(x))φ(x) dx.

Combining the above results, we get that

1

ZN
≤ exp

(
N2(I(µ) + a(N))

)
with a(N) some function in O

(
1
N

)
. Find N1 such that for N ≥ N1 we have a(N) ≤ η

4
,

since also I(µ) ≤ E + η
4
this means that for N ≥ N1

1

ZN
≤ eN

2(E+ η
2 ).

We will use this estimate on ZN to get our estimate on PN .

PN
(
RN \ AN,η+a

)
=

1

ZN

∫
RN\AN,η+a

exp (−SN(~x)) dN~x,

=
1

ZN

∫
RN\AN,η+a

exp
(
−S(1)

N (~x)− S(2)
N (~x)− S(3)

N (~x)
)
dN~x,

≤ eN
2(E+ η

2 )
∫
RN\AN,η+a

exp

−S(1)
N (~x)− S(2)

N (~x)− |∆
2
N |

|∆k
N |
∑
i∈∆k

N

(E + η + a)

 dN~x,

≤ eN
2(E+ η

2 )
∫
RN\AN,η+a

exp
(
−S(1)

N (~x)− S(2)
N (~x)−N(N − 1)(E + η + a)

)
dN~x,

= e−N
2( η2 +a)eN(E+η+a)

∫
RN\AN,η+a

exp
(
−S(1)

N (~x)− S(2)
N (~x)

)
dN~x.
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By Assumption 3.1 there exists a function u such that
∫
R e
− 1

2
u(x) dx <∞ and U(x1, . . . , xk) ≥

u(x1). In particular u is bounded below by some b. Therefore, noting that N2−k− |∆
2
N |

|∆k
N |
<

0,∫
RN\AN,η+a

exp
(
−S(1)

N (~x)− S(2)
N (~x)

)
dN~x

≤
∫
RN

exp

−N2−k
∑

i∈Nk\∆k
N

u(xi1)−
(
N2−k − |∆

2
N |

|∆k
N |

) ∑
i∈∆k

N

b

 dN~x,

= exp
((
|∆2

N | −N2−k|∆k
N |
)
b
) ∫

RN
exp

(
−
∣∣Nk \∆k

N

∣∣
Nk−1

(u(x1) + . . .+ u(xN))

)
dN~x,

= exp
((
|∆2

N | −N2−k|∆k
N |
)
b
)(∫

R
exp

(
−
∣∣Nk \∆k

N

∣∣
Nk−1

u(x)

)
dx

)N

.

In the second step we use that any index occurs equally often as the �rst element i1 of a
choice of indices i.

First consider the factor

exp
((
|∆2

N | −N2−k|∆k
N |
)
b
)
.

The combinatorial factor |∆2
N | −N2−k|∆k

N | is O(N) since |∆n
N | = Nn +O(Nn−1), so we

can �nd some B such that

exp
((
|∆2

N | −N2−k|∆k
N |
)
b
)
≤ eNB.

Next we consider the integral. Since |Nk\∆k
N | = 1

2
k(k−1)Nk−1+O

(
Nk−2

)
asN →∞

and3 k ≥ 2, we can �nd some N2 ≥ N1 such that for N ≥ N2 we have
|Nk\∆k

N |
Nk−1 ≥ 1

2
, so

for N ≥ N2 ∫
R

exp

(
−
∣∣Nk \∆k

N

∣∣
Nk−1

u(x)

)
dx ≤ C

∫
R
e−

1
2
u(x) dx

for some C > 0.
So we have established that

PN
(
RN \ AN,η+a

)
≤ e−aN

2

e−
η
2
N2

eN(E+η+a)eNB
(
C

∫
R
e−u(x) dx

)N
for N ≥ N2. Now �nd N∗ ≥ N2 such that for N ≥ N∗

e−
η
2
N2

eN(E+η+a)eNB
(
C

∫
R
e−u(x) dx

)N
≤ 1

and we are done.

3See Remark 3.2.1, if k = 1 the de�nition of SN changes which changes this integral
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Proposition 3.2.14. Let η > 0 and {~x(N)} a sequence of points in AN,η. Then νN :=
1
N

∑
δxi(N) has a weakly convergent subsequence and any weak limit point ν of {νN} has

I(ν) ≤ E + η.

Proof. Let us �rst establish that the sequence {νN} is tight, for which we mimic the
proof of Lemma 3.2.6. Let ε > 0 be arbitrary and b the lower bound of W . Find B such
that εB+ (1− ε)b > E+ η, and R such that W (x1, ..., xk) > B if |x1| > R, using Lemma
3.2.5.

Let fR(N) be the fraction of coordinates in ~x(N) whose absolute value is greater than
R. Then by the de�nition of AN,η we have that

(E + η) ≥ N−k
∑
i∈∆k

N

W (xi1(N), ..., xik(N)),

> N−k
∑
i∈∆k

N ,
|xi1 |>R

B +N−k
∑
i∈∆k

N ,
|xi1 |≤R

b,

=
|∆k

N |
Nk

· fR ·B +
|∆k

N |
Nk

· (1− fR) · b.

As
|∆k
N |

Nk → 1 as N →∞ this implies that lim supN→∞ fR(N) < ε, i.e. there exists an N1

such that for N > N1, fR =
∫
|x|>R dνN < ε. Choosing R′ > R such that the same holds

for N = 1, ..., N1 we get that {νN} is tight.
By Proposition 3.1.4 this implies that {νN} has some probability measure ν as a weak

limit point. For each νN we have∫
Rk

min(L,W (x1, ..., xk))dνN(x1)...dνN(xk) = N−k
∑
i∈Nk

min(L,W (yi1 , ..., yik)),

= N−k
∑
i∈Nk

min(L,W (yi1 , ..., yik)) +
|Nk \∆k

N |
Nk

L,

≤ N−k
∑
i∈∆k

N

W (yi1 , ..., yik) +
|Nk \∆k

N |
Nk

L,

≤ (E + η) +
|Nk \∆k

N |
Nk

L

so letting N tend to in�nity we get by weak convergence and 1− |∆
k
N |

Nk → 0 that∫
Rk

min(L,W (~x)) dν(~x) ≤ (E + η).

Letting L tend to in�nity it follows that I(ν) ≤ E + η by the monotone convergence
theorem.

Having established that the eigenvalues at �nite N will tend to be found in AN,η
and that this corresponds to low energy we are ready to prove the main theorem of this
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section: That the spectral density converges to the minimizer of I in the large-N limit.
But �rst a quick lemma primarily to recall some useful convergence results from Section
3.2.1.

Lemma 3.2.15. Let {νη} be a sequence of probability measures such that I(νη)→ E, then
νη has a weakly convergent subsequence and any such weak limit point ν has I(ν) = E.

Proof. This follows from Lemma 3.2.7 which tells us {νη} is tight, so that by Proposition
3.1.4 a weak limit point exist. Finally, any limit point is a minimizer by weak lower
semi-continuity of I, Lemma 3.2.8.

Theorem 3.2. Let φ : Rm → R be a bounded continuous function and de�ne ΦN : RN →
R by ΦN(~x) = N−m

∑
i∈Nm φ(xi1 , . . . , xim). Let µE be the minimizer of the associated

energy functional I. Then

lim
N→∞

〈ΦN〉PN = lim
N→∞

1

ZN

∫
RN

ΦN(~x)PN(~x) dN~x =

∫
Rm

φ(~y) d(µE)⊗m(~y).

Proof. We will prove this by showing that

lim sup
N→∞

〈ΦN〉PN ≤
∫
Rm

φ(~y)dν⊗msup (~y)

and

lim inf
N→∞

〈ΦN〉PN ≥
∫
Rm

φ(~y)dν⊗minf (~y)

for, a priori di�erent, measures νsup, νinf minimizing I. Uniqueness of the minimizer then
shows that the large-N limit of 〈ΦN〉PN exists and equals the integral of φ with respect to
µE. We will only give the details for the lim sup, the lim inf inequality follows by similar
arguments with some reversals of inequalities.

Let η > 0 be arbitrary and let χN := χAN,2η be the characteristic function of AN,2η.
Then∫
RN

ΦN(x)PN(x) dNx =

∫
RN

ΦN(x)χN(x)PN(x) dNx+

∫
RN

ΦN(x)(1− χN(x))PN(x) dNx.

Because ‖ΦN‖∞ = ‖φ‖∞ < ∞, the second integral can be bounded by ‖φ‖∞PN(RN \
AN,2η) ≤ ‖φ‖∞e−ηN

2
, at least for N large enough, and as such tends to zero. Hence

lim sup
N→∞

〈ΦN〉N = lim sup〈ΦNχN〉N .

Since AN,2η is compact, each ΦN attains a maximum at some ~y(N) ∈ AN,2η. Set

νN = 1
N

∑N
i=1 δyi(N), so that

〈ΦNχN〉PN ≤ Φ(y1(N), ..., yN(N)) =

∫
Rm

φ(x1, ..., xm) dνN(x1)... dνN(xm).

By Proposition 3.2.14 any weak limit point ν of {νN} has I(ν) < E + 2η. Pick a sub-
sequence of {〈ΦNχN〉PN} converging to its own lim sup. The corresponding subsequence
of {νN} still has a weakly convergent subsequence, we de�ne νη as any such limit point.
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So at this point we have constructed, for arbitrary η > 0, a probability measure νη
such that

lim sup
N→∞

〈ΦN〉N ≤
∫
Rm

φ(~x) dν⊗mη (~x) < E + 2η.

Using this, build the sequence of probability measures {ν 1
n
}n∈N. By Lemma 3.2.15 this

sequence has a weakly converging subsequence converging to a minimizer νsup of I and
we still have

lim sup
N→∞

〈ΦN〉N ≤
∫
Rm

φ(~x) dνsup.

Repeating this for νinf with the appropriate signs reversed, we are done.

Corollary 3.2.16. The m-point density of PN converges weakly to the m-fold tensor
power of the minimizer µE of the associated energy functional. In particular, the spectral
density of PN converges weakly to µE.

Proof. By Theorem 3.2,

1

Nm

∫
RN

∑
i∈Nm

φ(xi1 , . . . , xim)PN(~x) dNx→
∫
Rm

φ(~x) d(µE)⊗m(~x)

for any bounded continuous φ : Rm → R. On the other hand

1

Nm

∫
RN

∑
i∈Nm

φ(xi1 , . . . , xim)PN(~x)dNx =
1

Nm

∑
i∈Nm

∫
RN
φ(xi1 , . . . , xim)PN(~x) dNx,

=
1

Nm

∑
i∈Nm

∫
Rm

φ(x1, . . . , xm)PN
m (x1, . . . , xm) dmx,

=

∫
Rm

φ(x1, . . . , xm)PN
m (x1, . . . , xm) dmx

by de�nition of the m-point density PN
m .

3.3 The variational problem

To get the variational problem for µE we will assume that we are in the situation of Section
3.2, so in particular that Assumption 3.1 holds. Recall that in this assumption we have
a set of measures, Pcan, that we know the minimizer belongs to. Having established
uniqueness of the minimizer we may be able to further restrict the set of measures the
minimizer can be found in.

For example, the model in Chapter 4 has a re�ection symmetry. Once we know that
the minimizer is unique, for which we use the set of candidate measures having mean 0
(see Proposition 4.3.5), we know the minimizer must share this symmetry. Hence we can
further restrict our search for the minimizing measure to the even measures.

With this example in mind, let P ′can ⊂ Pcan be the reduced set of candidate measures
that we know µE to be in after establishing that the minimizer is unique.
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For any measure ν, de�ne the function

Wν(x) := I(•, ν, . . . , ν) =

∫
Rk−1

W (x, x2, ..., xk)dν(x2)...dν(xk). (3.5)

So in particular I(ν) =
∫
RWν(x)dν(x).

In order to �nd the minimizing measure µE we will use the following characterization.

Theorem 3.3. If µ ∈ P ′can and there exists a constant c ∈ R such that

1.
∫
RWµ(x)dν(x) ≥ c for all ν ∈ P ′can

2. Wµ(x) = c, µ-almost everywhere

then µ = µE the minimizer of I.
Conversely, if µ = µE the above properties hold with c = E = I(µE).

Proof. We start with the converse claim. Let µE be the minimizer of I and let ν ∈ P0(R).
Then by Lemma 3.2.3 we get∫

R
WµE(x) dν(x) = I(µE, . . . , µE, ν) ≥ I(µE) = E.

For the second part we mimic the proof of compact support, Lemma 3.2.6. Let
D = {x |WµE(x) < E} and consider

µ+1 =
µ+ µ|D

1 + µ(D)
,

µ−1 =
µ− µ|D

1− µ(D)
.

Then by Lemma 3.2.3 again, we get

I(µ, . . . , µ+1) ≥ E,

I(µ, . . . , µ−1) ≥ E.

Combining these as in Lemma 3.2.6 we get

I (µ, . . . , µ|D) = µ(D)E.

But we can calculate the left hand side of this equation to be∫
WµE(x) dµ|D(x) ≤ µ(D)E

but with strict inequality if µ|D(D) > 0. Hence µ(D) = µ|D(D) = 0, and as µE is a prob-
ability measure with

∫
RWµE(x) dµE(x) = E this implies equality µE-almost everywhere.

For the forward claim, suppose µ is as in the theorem. Then for any ν ∈ P ′can and
ρt := µ̃+ t(ν − µ̃),

d

dt

∣∣∣∣
t=0

I(ρt) = k

∫
R
Wµ(x)d(ν − µ)(x) ≥ k(c− c) = 0.
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Thus if we choose ν = µE we get, by construction of P ′can ⊂ Pcan and the proof of
Proposition 3.2.10, that

d2

dt2
I(ρt) = k(k−1)

∫
Rk
W (x1, ..., xk)dρt(x1)...dρt(xk−2)d(µE−µ)(xk−1)d(µE−µ)(xk) > 0

unless µ = µE. So if µ 6= µE we get a contradiction with µE being the minimizer.

Corollary 3.3.1. If ρ : R→ R is a continuous function with compact support such that
ρ dx ∈ P ′can and for some c ∈ R

1. Wρ dx(x) ≥ c for all x ∈ R,

2. Wρ dx(x) = c on {x | ρ(x) > 0}.

Then ρ dx = µE.
Conversely, if µE = ρ dx for a continuous function ρ, the above properties hold with

c = E = I(µE).

It is this �nal corollary that we will use in practice, especially the fact that Wρ dx

should be constant on the support of ρ will turn out to be a crucial in �nding ρ. There
is a priori no reason to expect that µE is even absolutely continuous with respect to the
Lebesgue measure, let alone with a continuous density function. This assumption will be
justi�ed by the ability to �nd ρ in practice, after which we can invoke the above Corollary
3.3.1 to con�rm that ρ = µE is the large-N limit spectral density.

3.4 Finding the equilibrium measure

In this section we will set up much of the general strategy for �nding the density function
ρ in Corollary 3.3.1. We will apply these techniques in Section 4.3 to the Dirac ensemble
de�ned in Chapter 4.

Similar to the de�nition of Wν , de�ne

Uν(x) =

∫
Rk−1

U(x, x2, . . . , xk) dν(x2) . . . dν(xk). (3.6)

For this section we will drop the subscripts on these functions since the only measure we
are concerned with is ν = ρ dx.

The main strategy is to assume ρ exists and use various techniques from complex
analysis to relate ρ to U , or more precisely, U ′ = d

dx
U . To make this work make the

following assumptions.

Assumption 3.2. We assume that

1. There is a continuous function ρ such that ρ dx = µE, where µE is the equilibrium
measure from Theorem 3.1.

2. The support of ρ is Σ = ∪ri=1[ai, bi], a union of r disjoint closed intervals.
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3. The function U(x) is di�erentiable and U ′(x) has an analytic extension to C \ Π
for some Π ⊂ C compact and Π ∩ Σ = ∅.

These assumptions will be justi�ed by the fact that for any such support Σ we can
�nd a corresponding function ρΣ and �nd a series of conditions that, at least in practice,
guarantee that for exactly one choice of {ai, bi} this ρΣ satis�es the conditions in Corollary
3.3.1. It should be noted that, once again, assumption 3 is the odd one out. This is really
an assumption on our model. The �rst two assumptions on the other hand will be justi�ed
once ρ is found.

Let us now introduce the main tools from complex analysis that we will be using in
this section.

De�nition 3.4.1. Let ψ : R→ R be continuous. The Cauchy transform of ψ is

H(ψ)(z) =
1

2πi

∫
supp(ψ)

ψ(x)

x− z
dx

which de�nes an analytic function on C \ supp(ψ).

For any continuous function f on C we de�ne f± on R by

f±(x) = lim
ε→0+

f(x± iε). (3.7)

Lemma 3.4.2 (Sokhotski-Plemelj formula). Let ψ : R → R be continuous with support
Σ. Then for x ∈ Σ,

H(ψ)±(x) =
1

2πi
PV

∫
Σ

ψ(y)

y − x
dy ± 1

2
ψ(x),

where PV denotes the Cauchy principal value.

Proof. This follows by a computation:

2πi ·H(ψ)±(x) = lim
ε→0+

∫
Σ

ψ(y)

y − x∓ iε
dy,

= lim
ε→0+

∫
Σ

ψ(y)

y − x∓ iε
y − x± iε
y − x± iε

dy,

= lim
ε→0+

∫
Σ

ψ(y)(y − x)

(y − x)2 + ε2
dy ± i

∫
Σ

ψ(y)ε

(y − x)2 + ε2
dy,

= PV

∫
Σ

ψ(y)

y − x
dy ± πiψ(x).

Where the last step follows by 1
π

ε
(y−x)2+ε2

is a nascent δ-distribution. The �rst integral
becomes the principal value as it is the appropriate limit of the Poisson kernel.

Theorem 3.4 (Riemann-Hilbert problem). Suppose G is a bounded, analytic function
on C \ Σ, Σ ⊂ R, then G = H(v) for v : R→ C de�ned by

v(x) = G+(x)−G−(x).
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Proof. By the Sokhotski-Plemelj formula (Lemma 3.4.2) the function H(v) solves the
scalar Riemann-Hilbert problem de�ned by Σ and v. To be explicit, H(v) is a bounded
function, analytic on C \ Σ such that H(v)+(x) − H(v)−(x) = v(x) on Σ. Since this
Riemann-Hilbert problem has a unique solution (the di�erence of two solutions would be
a bounded entire function) and G is clearly also a solution, we must have G = H(v).

Since the Sokhotski-Plemelj formula (Lemma 3.4.2) features the principal value, we
are interested in computing this for our speci�c ρ.

Lemma 3.4.3. Suppose ρ is as in Assumption 3.2 and U as in Equation 3.6, then

PV

∫
Σ

ρ(y)

y − x
dy = −k

β

d

dx
U(x).

Proof. By Corollary 3.3.1, W(x) = E for x ∈ Σ. We want to consider the distributional
derivative of this equation, for which we will use the split

W(x) = U(x)−
∫
Rk−1

1

k(k − 1)

β

2

∑
(i,j)∈∆2

k

log(|xi − xj|)ρ(x2) · · · ρ(xk) dx2 . . . dxk.

The log term becomes

2(k − 1)

k(k − 1)

β

2

∫
R

log(|x− y|)ρ(y) dy +
(k − 1)(k − 2)

k(k − 1)

β

2

∫
R2

log(|y − z|)ρ(y)ρ(z) dy dz.

Since the distributional derivative of log(|x|) is PV 1
x
, taking the distributional derivative

of W we get (note the swap from x− y to y − x),

U ′(x)− β

k
PV

∫
Σ

ρ(y)

x− y
dy = 0,

β

k
PV

∫
Σ

ρ(y)

y − x
dy = −U ′(x).

Remark 3.4.4. We continue to assume that the interaction degree k is at least 2, for
the case k = 1 see the discussion in Remark 3.2.1.

We are now ready for the big trick of this computation. Recall from Assumption 3.2
that the support of ρ is given by

Σ = ∪ri=1[ai, bi]

a union of disjoint closed intervals.

Lemma 3.4.5. Let s : C→ C be the function de�ned by

s(z) =
r∏
i=1

(z − ai)(z − bi).

Then there is a function
√
s that is analytic on C \ Σ and satis�es
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1. (
√
s(z))

2
= s(z),

2.
√
s(z) ∼ zr as z →∞

3.
√
s (z) =

√
s(z),

4.
√
s+(x) is purely imaginary if x ∈ Σ and real if x /∈ Σ.

5.
√
s+(x) = −

√
s−(x) for x ∈ Σ.

For future reference we also record that, if Σ is symmetric,

6.
√
s(−z) = (−1)r

√
s(z),

7.
√
s+(−x) = (−1)r+1

√
s+(x) for x ∈ Σ.

Proof. We will do this construction for r = 1, the general case then follows by multiplying
the corresponding functions for each interval [ai, bi].

Let
√
• − ai : C\(−∞, ai)→ C be the square root such that

√
• − ai(x) ≥ 0 for x ≥ 0,

and similarly
√
• − bi : C\(−∞, bi)→ C. Then consider

√
s0(z) :=

√
• − ai(z)

√
• − bi(z)

de�ned on C\(−∞, bi). It is easily seen that
√
s0 extends analytically to

√
s : C\[ai, bi]→

C because on (−∞, ai) the lower and upper limits match, since both factors contribute
a minus sign.

The �rst property then follows immediately from the above construction. The second
property follows from the observation that

√
s(z) ∼ ±zr and this sign has to be the same

in every direction. By construction
√
s(x) ∼ xr as the real number x → ∞, so the sign

is +.

For the third property a similar argument works,
√
s (z) = ±

√
s(z) and this sign is

the same everywhere. Since
√
s(z) ∼ zr the sign has to be plus. The fourth property

follows immediately from s(x) ≤ 0 for x ∈ Σ and s(x) > 0 for x /∈ Σ and together with
the third immediately implies the �fth. The sixth (if Σ is symmetric) follows from a
similar argument as the third.

For the �nal property, if Σ is symmetric we compute

√
s+(−x) = lim

ε→0+

√
s(−x+ iε),

= lim
ε→0+

(−1)r
√
s(x− iε),

= lim
ε→0+

(−1)r
√
s(x+ iε),

= lim
ε→0+

(−1)r+1
√
s(x+ iε),

using, respectively, properties 6, 3 and 4.

This function
√
s will turn up frequently and is universal (in the sense that it is

independent of the action). For later reference we will include the following examples.
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Lemma 3.4.6. If Σ = [−a, a], a < 0, then

√
s+(x) = i

√
a2 − x2

for x ∈ Σ,
1√
s(z)

=
1

z
+
a2

2

1

z3
+

3a4

8

1

z5
+

5a6

16

1

z7
+ . . . .

and �nally
√
s(z) = z − a2

2

1

z
− a4

8

1

z3
− a6

16

1

z5
− . . . .

Proof. The �rst claim follows immediately from the construction in Lemma 3.4.5, the
function

√
• − a has

√
• − a+(x) = i

√
a− x while

√
•+ a has

√
•+ a+(x) =

√
x+ a for

x ∈ Σ. Multiplying these yields
√
s+(x) = i

√
a− x

√
a+ x = i

√
a2 − x2.

For the power series of 1√
s(z)

we use fractional binomial theorem

1√
s(z)

= (z2 − a2)−
1
2 ,

= z−1

(
1− a2

z2

)− 1
2

,

= z−1

∞∑
n=0

(−1)n
(
−1

2

n

)
a2n

z2n
,

=
∞∑
n=0

1

4n

(
2n

n

)
a2n

z2n+1
,

using
(− 1

2
n

)
=
(
−1

4

)n (2n
n

)
. This selects the right square root, as the leading term for

z → ∞ is z−1
(− 1

2
0

)
= z−1. This Laurent series has inner radius of convergence a and

outer radius of convergence ∞.
The power series for

√
s(z) itself is found similarly

√
s(z) =

(
z2 − a2

) 1
2 ,

= z

(
1− a2

z2

) 1
2

,

= z

∞∑
n=0

(−1)n
(

1
2

n

)
a2n

z2n
.

Again this Laurent series converges outside the inner radius a and up to outer radius∞,
where we get the correct

√
s since it is asymptotically z.

Lemma 3.4.7. If Σ = [−b,−a] ∪ [a, b], 0 < a < b, then

√
s+(x) =

{
i
√
x2 − a2

√
b2 − x2 x ∈ [a, b],

−i
√
x2 − a2

√
b2 − x2 x ∈ [−b,−a],
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and
1√
s(z)

=
1

z2
+
a2 + b2

2

1

z4
+

3a4 + 2a2b2 + 3b4

8

1

z6
+ . . . ,

and

√
s(z) = z2 − a2 + b2

2
− a4 − 2a2b2 + b4

8

1

z2
− a6 − a4b2 − a2b4 + b6

16

1

z4
− . . . .

Proof. The �rst claim follows from the same considerations as in Lemma 3.4.6 for [a, b]
and property 7 of Lemma 3.4.5.

For the Laurent series we also proceed similarly,

1√
s(z)

=
(
z2 − a2

)− 1
2
(
z2 − b2

)− 1
2 ,

= z−2

(
∞∑
n=0

(−1)n
(
−1

2

n

)
a2n

z2n

)(
∞∑
n=0

(−1)n
(
−1

2

n

)
b2n

z2n

)
,

= z−2

∞∑
n=0

(
n∑

m=0

(
−1

2

m

)(
−1

2

n−m

)
a2nb2(n−m)

)
(−1)nz−2n,

=
∞∑
n=0

(
n∑

m=0

(
2m

m

)(
2(n−m)

n−m

)
a2mb2(n−m)

)
1

4n
1

z2n+2
.

This Laurent series also has outer radius of convergence ∞ and has inner radius of
convergence b.

The Laurent series near in�nity for
√
s(z) is also found similarly,

√
s(z) = z2

(
1− a2

z2

) 1
2
(

1− b2

z2

) 1
2

,

= z2

∞∑
n=0

(
n∑

m=0

(
1
2

m

)(
1
2

n−m

)
a2nb2(n−m)

)
(−1)nz−2n.

We will now use the function
√
s de�ned in the above Lemma 3.4.5 to take a Riemann-

Hilbert problem for ρ and turn it into a Riemann-Hilbert problem for U ′. Let

G(z) = H(ρ)(z),

and de�ne

G̃(z) =
G(z)√
s(z)

.
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Since
√
z ∼ zr this is a bounded function, it is analytic on C \Σ and we have, for x ∈ Σ,

G̃+(x)− G̃−(x) =
G+(x)√
s+(x)

− G−(x)√
s−(x)

,

=
1√
s+(x)

(G+(x) +G−(x)) ,

=
1√
s+(x)

1

πi
PV

∫
Σ

ρ(y)

y − x
dy,

=
1√
s+(x)

i

π

k

β
U ′(x).

Using �rst the Sokhotski-Plemelj formula (Lemma 3.4.2) and then our result about

the minimizer ρ from Lemma 3.4.3. But this means G̃ is the solution to the Riemann-
Hilbert problem de�ned by Σ and 1√

s+(x)
i
π
k
β
U ′(x). So by Theorem 3.4,

G̃(z) =
1

2πi

∫
Σ

1√
s+(y)

i

π

k

β
U ′(y)

dy

y − z
=

k

2βπ2

∫
Σ

U ′(y)√
s+(y)

dy

y − z
. (3.8)

Having established this formula for G̃, we are going to consider the function

f(z) =
U ′(z)√
s(z)

for the analytic extension of U ′(x) to C \ Π assumed to exist in Assumption 3.2. The
function f(z) is analytic on C \ (Σ∪Π), as both Σ and Π are assumed to be compact we
can consider a contour γ = γR ∪ γΣ,ε ∪ γΠ,ε consisting of

γR: a counter-clockwise circle contour of radius R encircling Σ and Π,

γΣ,ε: a clockwise race-track contour around the intervals comprising Σ at a distance ε,

γΠ,ε: a clockwise contour around Π at a distance ε.

Then by the residue theorem we get for any z0, |z0| < R and z0 away from Σ and Π

2πif(z0) =

∫
γR

f(z)
dz

z − z0

+

∫
γΣ,ε

f(z)
dz

z − z0

+

∫
γΠ,ε

f(z)
dz

z − z0

. (3.9)

Let us investigate these terms separately, starting with the circle contour.

Since by Assumption 3.2 U ′ is analytic at in�nity and
√
s is as well,

lim
R→∞

∫
γR

f(z)
dz

z − z0

= 2πi [f(z)]−1
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where we use the notation [f(z)]n for the coe�cient of zn in the Laurent series for f . We
can �nd this coe�cient as follows

[f(z)]−1 =

[
U ′(z)√
s(z)

1

z − z0

]
−1

,

=

[
U ′(z)√
s(z)

(
1 +

z0

z
+ . . .

)]
0

,

=
∞∑
n=0

[
U ′(z)√
s(z)

]
n

zn0

So we can write

lim
R→∞

∫
γR

f(z)
dz

z − z0

= 2πip(z0) (3.10)

where

p(z0) =
∞∑
n=0

[
U ′(z)√
s(z)

]
n

zn0 . (3.11)

Remark 3.4.8. In practice, for example in Section 4.3, p will be a polynomial (hence
the choice of notation) that depends only on S(H). This is due to U ′(z) generally having
polynomial growth, say of degree d, as z →∞ then the highest power of z0 appearing will
be zd0 with coe�cient simply the coe�cient of zd in the asymptotics of U ′(z). The lower
order coe�cients involve the coe�cients of

√
s as well, but can still be computed as we

do in Section 4.3.

Next we will consider the race-track contour of radius ε around Σ, speci�cally in the
ε→ 0 limit. We break this up into the semi-circles around each ai and bi, as well as the
intervals above and below Σ and start by showing that the contribution of the semi-circles
vanishes in the ε→ 0 limit.

Recall that

f(z) =
U ′(z)√
s(z)

and that by Assumption 3.2 U ′ is analytic on a neighbourhood of Σ. Hence the singu-
larities at the ai and bi are only due to 1√

s(z)
, which behaves like 1√

z
near ai, bi. Since

the length of the semi-circles is linear in ε and the function blows up at the rate 1√
ε
the

contributions of the semi-circles vanish in the limit ε→ 0.
Next we consider the contribution from the intervals above Σ,

lim
ε→0+

∫
Σ+iε

U ′(z)√
s(z)

dz

z − z0

= lim
ε→0+

∫
Σ

U ′(y + iε)√
s(y + iε)

dy

y + iε− z0

,

=

∫
Σ

U ′(y)√
s+(y)

dy

y − z0

,

=
2βπ2

k
G̃(z0)
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The contribution from the intervals below Σ is also 2βπ2

k
G̃(z0) by the same computation

but where the minus sign due to the orientation cancels against the minus sign from√
s−(y) v.s.

√
s+(y).

So in total we get

lim
ε→0+

∫
γΣ,ε

f(z)
dz

z − z0

=
4βπ2

k
G̃(z0). (3.12)

To work out the third contribution
∫
γΠ,ε

f(z) dz
z−z0 we need more information about

the behaviour of U ′ around its singularities Π. For now we will simply give it a name

R(z0) :=
1

2πi

∫
γΠ,ε

U ′(z)√
s(z)

dz

z − z0

(3.13)

These computations leave us with the following result

Proposition 3.4.9. For p as in Equation 3.11 and R as in Equation 3.13, we have

ρ(x) =
k

β

√
s+(x)

πi
p(x) +

k

β

√
s+(x)

πi
R(x)

for x ∈ Σ.

Proof. From the Cauchy integral representation of f in Equation 3.9 we get using Equa-
tions 3.10, 3.12, and 3.13 that

2πif(z0) = 2πip(z0) +
4βπ2

k
G̃(z0) + 2πiR(z0).

Isolating G̃ we get
2πiβ

k
G̃(z) = − U

′(z)√
s(z)

+ p(z) +R(z0)

so also

G(z) = − k

2πiβ
U ′(z) +

k

2πiβ

√
s(z)p(z) +

k

2πiβ

√
s(z)R(z).

Now, by the Sokhotski-Plemelj formula (Lemma 3.4.2) we can recover ρ from G = H(ρ)
by

ρ(x) = G+(x)−G−(x) =
k

β

√
s+(x)

πi
p(x) +

k

β

√
s+(x)

πi
R(x)

for x ∈ Σ, using that U ′(z), p(z), and R(z) are analytic near Σ and that
√
s+ = −

√
s−

on Σ (property 5 in Lemma 3.4.5).

An important note about this result is that since p and R depend on U they will
often contain ρ in a non-trivial way. This means Proposition 3.4.9 gives a functional
equation for ρ rather than a straight up formula. An exception to this is whenever4 and

4One should keep in mind that most of our formulas so far have required k ≥ 2, however using the
technique in Remark 3.2.1 k = 1 to transform a k = 1 model to a k = 2 model with trivial interaction
still leads to a straightforward formula for ρ.



3.4. Finding the equilibrium measure 81

U is a polynomial. In this situation R will be 0 and U will only depend on ρ through its
moments.

This dependence is resolvable using Proposition 3.4.10 or the approach discussed in
Section 4.3.2. Then this proposition produces a formula for ρ, as seen in [22].

Also in more complicated models, such as the multi-trace models in [39], there are
techniques to solve for, or at least approximate, ρ using Proposition 3.4.9.

At this point we have established an equation for ρ that, at least in practice, will
allow us to uniquely determine ρ given Σ. That leaves us with the question of �nding
Σ = ∪ri=1[ai, bi]. This process is even more dependent on the speci�cs of the particular
model but the general idea is that for only one choice of r, {ai, bi} the corresponding ρ
will be a probability density.

While the speci�cs are very model dependent, there are some general principles.

Proposition 3.4.10. The support Σ = ∪ri=1[ai, bi] is such that∫
Σ

U ′(y)√
s+(y)

yn dy =

{
0, 0 ≤ n < r
βπ
ik
, n = r,

and
n∑
i=0

(∫
Σ

U ′(y)√
s+(y)

yr+i dy
[√
s(z)

]
r−(n−i)

)
=
βπ

ik
µEn .

Proof. We have established in Equation 3.8 that we can �nd G̃ as the Cauchy transform
of the function U ′√

s+
de�ned on Σ. That equation implies that

G(z) =
k
√
s(z)

2βπ2

∫
Σ

U ′(y)√
s+(y)

dy

y − z
.

Moreover, for the Cauchy transform itself we know, using the geometric series for 1
y−z ,

that

G(z) = − 1

2πi

∞∑
n=0

µEn
zn+1

for z large enough, where µEn is the n-th moment of µE.
So we get

ik

βπ

∞∑
n=0

√
s(z)

zn+1

∫
Σ

U ′(y)√
s+(y)

yn dy =
∞∑
n=0

1

zn+1
µEn .

The right-hand side has only negative powers of z, while the left-hand side can have
positive powers.

De�ne an by an = ik
βπ

∫
Σ
U ′(y)√
s+(y)

yn−1 dy for n ≥ 1. Also de�ne bn by
√
s(z) =∑∞

n=−r bnz
−n. Then the above equation becomes the in�nite system

∑
m

ambn−m =

{
0 n ≤ 0
µEn−1 n ≥ 1
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for all n ∈ Z, where the sum is over those integers for which both am and bn−m are
de�ned.

This system of equations reads

...
0 = 0,

a1b−r = 0,
a1b−r+1 + a2b−r+2 = 0,

...
a1b−1 + . . .+ arb−r = 0,

a1b0 + . . .+ ar+1b−r = µE0 = 1,
a1b1 + . . .+ ar+1b−r+1 + ar+2b−r = µE1 ,

...

This implies that a1, . . . , ar = 0 and ar+1 = 1 since b−r = 1 by Lemma 3.4.5. We further
get

n∑
i=1

ar+ib−r+(n−i) = µEn−1.

Translating back, we obtain

ik

βπ

∫
Σ

U ′(y)√
s+(y)

yn dy =

{
0, n < r
1, n = r.

and
ik

βπ

n∑
i=0

(∫
Σ

U ′(y)√
s+(y)

yr+i dy
[√
s(z)

]
r−(n−i)

)
= µEn

as desired.

This proposition gives us r + 1 conditions on the 2r unknowns {ai, bi} and no in-
formation about r itself. There are further general conditions, called gap conditions,
corresponding to the fact that not only is W constant on each interval (which is all we
have used so far), it is the same constant on each interval. This gives us a further r − 1
equations, one for each gap, for a total of 2r equations. So, provided all these equations
are independent (they turn out to be in practice) this will give us enough information to
determine the support given r.

The last task is then to determine r, the number of intervals (or cuts in the literature)
that make up Σ. This can be determined by the condition that ρ ≥ 0 and Σ = {x | ρ(x) ≥
0}.

These gap conditions are once again dependent on ρ, leading to an even more com-
plicated set of simultaneous equations for ρ, ai, bi when combined with Proposition 3.4.9.
We will only be dealing with the r = 1 case, in which case r + 1 = 2r, or the r = 2
symmetric case, where one of the three moment conditions is trivial due to the symmetry
but the other two moment conditions determine the two unknowns.



Chapter 4

Fuzzy Geometries with a Fermion

This chapter will cover the de�nition and, at least partial, solution of a very simple toy
model of quantum gravity for which the techniques from Chapter 3 are applicable. As
discussed in Section 1.1, in a spectral triple

(A,H,D)

the metric information is contained in the Dirac operator D. So a path integral over
possible geometries corresponds to a path integral over the space of Dirac operators. A
spectral triple with a random Dirac operator, in this case given by a path integral, is
called a Dirac ensemble.

With this in mind we consider the class of fuzzy geometries, de�ned in Section 4.1,
where the space of Dirac operators is a �nite dimensional space parametrized by a �nite
set of Hermitian matrices. This makes the space of Dirac operators �nite dimensional
so that integration over it is well-de�ned. More precisely, we will consider the simplest
such fuzzy geometry where the space of Dirac operators is parametrized by a single
Hermitian matrix. That means that the corresponding Dirac ensemble in fact becomes
a single-matrix, but multi-trace, random matrix model.

This random fuzzy geometry has already been studied analytically in [39] and more
complex fuzzy geometries have been studied numerically [5, 7, 32, 28]. Both the sim-
plest Dirac ensembles as well as the more complex ones are found to exhibit interesting
behaviour, some of which we will discuss in Section 4.4 when we compare it to the be-
haviour of our new ensemble. Currently these models are all based entirely around a
bosonic action, incorporating only the Dirac operator D.

Our goal in this project is to add a fermionic action as well. In the formulation of
the standard model within noncommutative geometry [13, 10, 3] the state of the system
is contained in both D, containing the metric and gauge �elds, and in a vector ψ ∈ H,
containing the fermionic �elds. The action of such a con�guration is then given by both
a bosonic and fermionic part,

S(D,ψ) = Tr(f(D)) + 〈ψ,Dψ〉,

or slight variations on this combination.
While incorporating the fermionic action 〈ψ,Dψ〉 we �nd we need massive fermions

and therefore need to move from fuzzy geometries to almost fuzzy geometries. The term

83
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almost fuzzy geometry is meant in similarity to the almost commutative spectral triples
usually used in the formulation of the standard model in noncommutative geometry. So
we want to consider spectral triples of the form

(Afuzzy, Hfuzzy, Dfuzzy)⊗ (Afinite, Hfinite, Dfinite).

Such almost fuzzy geometries are also studied in [55, 54, 4], where they are called
Yang-Mills-Higgs fuzzy geometries. This is justi�ed since even for purely bosonic1 ac-
tions they already show terms very reminiscent of the Yang-Mills action and the Higgs
mechanism. This is a further motivation for us to consider such almost fuzzy geometries.

In Section 4.1 we will de�ne the basic concepts that enter in to the discussion of
our Dirac ensemble. In Section 4.2 we will specialize to the ensemble of interest and
compute the corresponding random matrix model. We will also show this model satis�es
the assumptions required for the tools from Chapter 3. The computations for �nding the
spectral density of our Dirac ensemble, based on the general principles of Section 3.4,
are gathered in Section 4.3. Finally in Section 4.4 we discuss the e�ects of the fermionic
sector based on the results of the preceding computations.

4.1 Almost fuzzy geometries, the fermionic action and

Dirac ensembles

The terminology fuzzy geometry in the sense we will use it was introduced by Barrett in
[4]. They are a particularly simple class of spectral triples. Examples of fuzzy geometries
include the famous fuzzy sphere [48, 19, 31] and the fuzzy torus [6, 45, 46].

De�nition 4.1.1. A fuzzy geometry of signature (p, q), or (p, q) fuzzy geometry, is a
spectral triple

(MN(C), V ⊗MN(C), D; J,Γ)

where V is a (p, q) spinor space with charge conjugation JV and, if p+ q is even grading
ΓV . The inner product for the Hilbert space MN(C) is the Hilbert-Schmidt inner product,
and the inner product on V ⊗MN(C) is the induced tensor product inner product.

The real structure for the fuzzy geometry J is given by J(v ⊗ A) = JV (v) ⊗ A∗. If
p + q is even the grading of the fuzzy geometry is given by Γ = ΓV ⊗ 1, if p + q is odd
the grading is omitted from the data. The Dirac operator D is any operator such that the
spectral triple has KO-dimension q − p (see Table 1.1).

The reason fuzzy geometries are interesting for our purposes is that the space of Dirac
operators for a given signature and matrix size is given by a �nite set of self-adjoint Dirac
operators.

1By purely bosonic we mean entirely in terms of f(D), calling this purely bosonic may obscure the
fact that this action can also include metric information. It is motivated by the appearance of gauge
�elds in this term when considering inner �uctuations relative to a reference Dirac operator.
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Theorem (Barrett, [4]). The Dirac operator of a fuzzy geometry can be written

D(v ⊗ A) =
∑
I

γIv ⊗KIA+ ε′εIAKI

In this sum I ranges over sets of the form {i1 ≤ . . . ≤ ik} with 1 ≤ ij ≤ p+ q, if q− p is
even k must be odd. By γI we mean the product of the gamma matrices appearing in I,
in order, and KI is a self-adjoint matrix and the sign εI is determined by (γI)∗ = εIγ

I .
The sign ε′ is determined by the KO-dimension s = q − p of the fuzzy geometry.

This theorem is a consequence of requiring D to have the correct KO-dimension.
The most restrictive of the conditions is the order one condition (See De�nition 1.1.2).
To give an example of the proof of this theorem without needing to introduce too much
additional terminology we will prove it for the simplest case, signature (0, 1), which also
happens to be the case we are interested in.

Lemma 4.1.2. A (0, 1) fuzzy geometry is of the form

(MN(C),MN(C), [H, •])

for a Hermitian matrix H, and any such triple de�nes a (0, 1) fuzzy geometry.

Proof. In the signature (0, 1) the spinor space V is C with charge conjugation given by
complex conjugation. Hence V ⊗MN(C) ∼= MN(C) with charge conjugation simply given
by the adjoint.

Let {Eij}Ni,j=1 denote the matrix units in MN(C), and write CN ⊗ CN ∼= MN(C) via
v⊗w 7→ |v〉〈w|. Under this isomorphism the left action of MN(C) is given by a 7→ a⊗ 1
and the right action is given by b 7→ 1⊗ b∗.

For any map K : CN ⊗ CN → CN ⊗ CN de�ne

πLK :=
1

N

∑
i,j

(E∗i,j ⊗ 1)K(Ei,j ⊗ 1),

note that πLK commutes with the left action of MN(C) since(
1

N

∑
i,j

(E∗i,j ⊗ 1)K(Ei,j ⊗ 1)

)
(Ek,l ⊗ 1) =

1

N

∑
i,j

(E∗i,j ⊗ 1)K(Ei,l ⊗ 1)δj,k,

=
1

N

∑
i

(E∗i,k ⊗ 1)K(Ei,l ⊗ 1),

=
1

N

∑
i,j

δj,l(E
∗
i,k ⊗ 1)K(Ei,j ⊗ 1),

= (Ek,l ⊗ 1)

(
1

N

∑
i,j

(E∗i,j ⊗ 1)K(Ei,j ⊗ 1)

)
,

so πLK commutes with a⊗ 1 by linearity. Similarly

πRK :=
1

N

∑
i,j

(1⊗ E∗i,j)K(1⊗ Ei,j)
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commutes with the right action of MN(C).
Since 1

N

∑
i,j(E

∗
i,j ⊗ 1)(Ei,j ⊗ 1) = 1, πLK = K if K already commutes with the

left action. Again similarly for the right action and πR. By the �rst order condition
on D, [D, a ⊗ 1] commutes with the right action for any a ∈ MN(C). So [D, a ⊗ 1] =
πR([D, a ⊗ 1]) = [πRD, a ⊗ 1] since a ⊗ 1 commutes with the right action as well. That
means that for any a ∈MN(C), [D − πRD, a⊗ 1] = 0, so that πRD −D commutes with
the left action. So πL(πRD −D) = πRD −D, or in other words

D = πLD + πRD − πLπRD.
A priori D =

∑
i Si ⊗ Ti for some Si, Ti ∈ MN(C). Then πLD =

∑
i,j,k(Si)j,k1 ⊗ Ti,

so we can write πLD = 1 ⊗ T for some T ∈ MN(C). Similarly πRD = S ⊗ 1 and
πLπRD = c1⊗1 for some c ∈ C. This shows thatD(v⊗w) = S(v⊗w)+(v⊗w)T+c(v⊗w).

Since D should be self-adjoint, it easily follows that S = S∗, T = T ∗ and c = c.
Moreover, the spectral triple should have KO-dimension 1, so JD = −DJ by Table 1.1.
This implies that S = −T and c = −c, so that Da = Ha− aH = [H, a] for a self-adjoint
matrix H.

It is a straightforward check that any self-adjoint matrix de�nes a valid Dirac operator
by D = [H, •].

Having established what a fuzzy geometry is we turn our attention to the next concept
we need on our way to fermionic Dirac ensembles, the fermionic integral. This integral is
also commonly referred to as the Berezin integral, after Felix Berezin credited with the
invention of the concept, or Grassmann integral, since the concept is closely related to
the exterior or Grassmann algebra.

De�nition 4.1.3. Let e = {ei}i∈I be an ordered, �nite set of generators for a Grassman
algebra. The fermionic, or Berezin, integral of an element ω =

∑
J⊂I ωJ(∧j∈J ej) in the

Grassmann algebra is then de�ned by∫
Ber

ω de = ωI .

In other words the integral selects the coe�cient of e1 ∧ . . . ∧ en if I = {1, . . . , n}.
Lemma 4.1.4. If e = {ei}ni=1, f = {fi}ni=1 are two sets of generators for a �nite dimen-
sional Grassman algebra related by a matrix P , i.e.

∑
i P

i
jei = fj, then∫

Ber

ω de = det(P )

∫
Ber

ω df.

Proof. It su�ces to check how the elements e1 ∧ . . . ∧ en and f1 ∧ . . . ∧ fn are related.

f1 ∧ . . . ∧ fn =
n∑

i1,...,in=1

(
P i1

1 ei1
)
∧ . . . ∧

(
P in
n ein

)
,

=
∑
σ∈Sn

(
P
σ(1)
1 eσ(1)

)
∧ . . . ∧

(
P σ(n)
n eσ(n)

)
,

=
∑
σ∈Sn

P
σ(1)
1 · · ·P σ(n)

n (−1)sgn(σ)e1 ∧ . . . ∧ en,

= det(P )e1 ∧ . . . ∧ en
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where we used that any choice of indices with a repeated index is 0 by the Grassmann
algebra relations to obtain the sum over permutations.

This de�nition applies to our situation of �nite dimensional spectral triples by con-
sidering the coordinate functions of H to be Grassmann generators, rather than simply
real valued functions. This is very much in line with the basic idea of noncommutative
geometry, where the algebra of a spectral triple is often called the coordinate algebra.

We then interpret the inner product 〈ψ,Dψ〉 featuring in the fermionic action as an
element of that Grassmann algebra. A vector ψ can then be thought of as an element in
a Grassmann algebra by interpreting ψ = ψ1e1 + . . . ψnen for a basis {ei} and Grassman
generators {ψi}. To be precise,

De�nition 4.1.5. Let V be a �nite dimensional vector space with ordered basis {ei}i∈I .
Then for a real bilinear form (•, •) on V we de�ne the element (v, v) of the Grassmann
algebra generated by {εi}ni=1 by

(ε, ε) =
∑
i,j∈I

(ei, ej)εiεj.

For any sesquilinear form 〈•, •〉 on V we de�ne

〈ε, ε〉 =
∑
i,j∈I

〈ei, ej〉εiεj

as an element of the Grassmann algebra generated by {εi, εi}i∈I .
We think of these Grassmann algebras as the coordinate function algebras on the

(fermionic) Hilbert space.

Remark 4.1.6. In practice we will often fail to specify an ordered set of Grassmann
generators or a basis for the vector space from which one can be built, or more commonly
we will fail to specify only the ordering on a basis. By Lemma 4.1.4 this leads to an
ambiguity of a non-zero scalar.

The reason for this omission on our part is that our fermionic integrals will always
appear as a factor in a probability density. So any ambiguity of a non-zero scalar is
removed by the normalization condition.

We will further be sloppy in notation by using the same symbol, usually ψ, for an
arbitrary vector as well as for a set of generators of the Grassman algebra of coordinate
functions on the vector space containing the vector.

With these de�nitions we want to highlight the following classical results.

Lemma 4.1.7. Let V be a vector space with real bilinear form (•, •). If {ei}ni=1 is
an ordered basis for V and {εi}ni=1 the associated fermionic coordinate functions, the
fermionic integral ∫

Ber

e−
1
2

(ε,Aε) dε = Pf(A)
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if A is skew-adjoint and dim(V ) is even. If 〈•, •〉 is a sesquilinear on V form then∫
Ber

e−〈ε,Bε〉 dε dε = det(B).

The exponential of an element of a Grassmann algebra is de�ned by its power series which
on a Grassmann algebra is necessarily �nite.

Proof. We will prove the determinant formula, the Pfa�an case is very similar and es-
sentially done in Lemma 4.2.4.

The �rst step is computing e−〈ε,Bε〉. By De�nition 4.1.5 for the form 〈•, B•〉 we have

〈ε, Bε〉 =
∑
i,j

Bi,jεiεj.

The exponential is de�ned by its power series,

e−〈ε,Bε〉 =
∞∑
k=0

(−1)k

k!
(〈ε, Bε〉)k ,

where the sum is �nite due to the Grassman relations.
For the fermionic integral we are after the coe�cient of ε1 . . . εnε1 . . . εn. This means

we only need to �nd the k = n term in the sum which is

(−1)n

n!

(
n∑

i,j=1

Bi,jεiεj

)n

=
(−1)n

n!

∑
~i,~j∈nn

(
n∏
k=1

B~ik,~jkε~ikε~jk

)
,

=
(−1)n

n!

∑
σ,τ∈Sn

(
n∏
k=1

Bσ(k),τ(k)εσ(k)ετ(k)

)
,

= (−1)n
∑
τ∈Sn

(
n∏
k=1

Bk,τ(k)εkετ(k)

)
.

So the coe�cient of ε1 . . . εnε1 . . . εn is

∑
τ∈Sn

n∏
k=1

(−1)sgn(k)Bk,τ(k) = det(B).

The (−1)n and (−1)sgn(k) are due to the reordering the various ε and ε in the correct
order.

The determinant formula is, up to some factors of 2π, reminiscent of the regular
Gaussian integral which is proportional to det(B)−1 instead. It is also worth mentioning
that the above integrals are independent of the choice of basis for V , as opposed to the
situation in Lemma 4.1.4, because the element e−〈ψ,Dψ〉 changes depending on the basis
as well.
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Now that we have established the necessary concepts we turn to Dirac ensembles.
In general a Dirac ensemble consists of a space of Dirac operators that complete a set
spectral triple, as well as a probability measure on that space. Since we are restricting
ourselves to fuzzy geometries we can be a bit more precise about this space of Dirac
operators and the probability measure.

De�nition 4.1.8. A Dirac ensemble for a fuzzy geometry of signature (p, q) and size N
is a probability density of the form

P (D) =
1

Z
e−S(D)dD

where dD is the Lebesgue measure on Hk
N
∼= RkN2

for k the number of self-adjoint
matrices required to parametrize the space of Dirac operators. The function S is called
the action and the normalization factor Z is called the partition function when considered
as a function of possible parameters ( coupling constants) in the action.

As discussed in the introduction the goal of this project is to include the fermionic
action into these Dirac ensembles, so it is perhaps strange that the fermionic action
does not feature in this de�nition. This is due to the fact that our goal is not, yet, the
computation of fermionic observables. At the moment we are only interested in the e�ect
that the presence of the fermionic action has on the distribution of the Dirac operator.
The technical obstruction to considering mixed observables, at least analytically, is that
it would induce a multi-matrix model with matrices in highly asymmetric roles, those
appearing in the Dirac operator versus the matrix representing the fermionic �eld.

Our de�nition of Dirac ensembles is further motivated by the following observation.
Given some Dirac ensemble with action Sb, consider a purely metric observable A : D →
R. Then the expectation value of A for this Dirac ensemble is given, in the presence of
a fermionic action, by

〈A〉 =
1

Z

∫
D,ψ

A(D)e−Sb(D)−〈ψ,Dψ〉 dψ dD,

=
1

Z

∫
D

A(D)e−Sb(D)

∫
Ber

e−〈ψ,Dψ〉 dψ dD,

=
1

Z

∫
D

A(D)e−Sb(D)F (D) dD,

=
1

Z

∫
D

A(D)e−Sb(D)+log(F (D)) dD.

This leads us to make the following de�nition.

De�nition 4.1.9. Suppose ((p, q), N, Sb) de�nes a Dirac ensemble. Let

F (D) =

∫
Ber

e−〈ψ,Dψ〉 dψ,

then the fermionic Dirac ensemble for the bosonic action Sb is the Dirac ensemble with
action S(D) = Sb(D)− log(F (D)).
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So that for our purposes of only computing observables of the Dirac operator the
fermionic action can be interpreted as a change to the bosonic action. The di�erence with
previous models is that log(F (D)) will be quite di�erent from the trace of a polynomial
in D, which is the form Sb(D) usually takes.

4.2 The (0, 1) fuzzy geometry with one fermion

The Dirac ensemble we will be considering is based on the (0, 1) fuzzy geometry2. In
Lemma 4.1.2 we have established that these geometries are of the form

(MN(C),MN(C), [H, •]; •∗)

for a self-adjoint N ×N matrix H. We will consider the fermionic Dirac ensemble with
the quartic bosonic action

Sb(D) = g4 Tr(D4) + g2 Tr(D2) (4.1)

for g4 > 0. Potentials containing higher powers of D are certainly accessible with the
tools we have but will make the computations in the following sections unnecessarily com-
plicated. The quartic Dirac ensemble already exhibits su�ciently interesting behaviour.
In particular, even without fermions, it has a spectral phase transition. One of our main
goals is to �nd the e�ect the fermionic action has on this phase transition. We will in
the following sections also occasionally restrict to the Gaussian case given by g4 = 0 and
g2 > 0.

However, as discussed in the introduction of this chapter, the Dirac ensemble over
the (0, 1) fuzzy geometry is not the model we are actually interested in. We want to
consider instead an almost fuzzy geometry over the (0, 1) space. The reason for this is
the following result.

Lemma 4.2.1. Let D = [H, •] be the Dirac operator of a (0, 1) fuzzy geometry. Then
the fermionic contribution

F (D) =

∫
Ber

e−〈ψ,Dψ〉 dψ = 0.

Proof. Let {ei}Ni=1 be an orthonormal (relative to the usual CN inner product) basis of
eigenvectors for H with Hei = λiei and let Ei,j be the matrix units relative to {ei}. Then

D(Ei,j)ek = [H,Ei,j]ek,

= δj,kHei − λkEi,jek,
= λiδj,kei − λkδj,kei,
= (λi − λj)δj,kei,
= (λi − λj)Ei,jek.

2One might ask why we consider the signature (0, 1) geometry only and not the signature (1, 0) as
well. This is because our main techniques are not available for signature (1, 0), see Remark 4.3.2.
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So the eigenvalues of D are di�erences of eigenvalues of H. Moreover Ei,j are orthonormal
with respect to the Hilbert-Schmidt inner product so that by Lemma 4.1.7

F (D) =

∫
Ber

e−〈ψ,Dψ〉 dψ = det(D) =
∏
i,j

(λi − λj) = 0N(−1)N
∏
i<j

(λi − λj)2.

This means that we cannot, directly, de�ne a probability density on the space of Dirac
operators D = HN by the recipe for a fermionic fuzzy Dirac ensemble (De�nition 4.1.9).
However, we could naively attempt to cancel the 0N in F (D) against the corresponding
0N appearing in Z. One way we can make this precise is by considering 〈ψ, (D + m)ψ〉
as fermionic action instead and letting m tend to zero.

This trick of adding a mass m (by analogy with physics, e.g. [27, Ch. 4.1]) is
technically su�cient, but not satisfactory. In particular D + m is not a Dirac operator,
as Lemma 4.1.2 shows that any (0, 1) Dirac operator is purely a commutator. Moreover
both the analogy with physics, wherem appears with a Cli�ord-type matrix, as well as the
standard model in noncommutative geometry, where fermion masses are added through
the external product with a �nite space, run against the grain of simply considering
D +m.

Instead we will add the mass term by building an almost fuzzy geometry. As our
�nite space we consider the spectral triple

(C,C,m; •) (4.2)

of KO-dimension 7. The external product with a (0, 1) fuzzy geometry is then given by(
MN(C),MN(C)⊗ C2, D = [H, •]⊗ σ1 +m⊗ σ2; •∗ ⊗ J, 1⊗ σ3

)
(4.3)

where the σi are the Pauli matrices and J( v1
v2 ) =

(
v1
−v2

)
. This is a spectral triple of

KO-dimension 0, see Sections 1.1.1 and 1.1.2 for more details on external products and
KO-dimension.

Our tools are capable of handling more complicated �nite spaces, and this is something
we will de�nitely continue to explore in the future. It is also important to note that we
treat m di�erently from H, while it is, essentially, a Dirac operator we consider it as
a �xed physical input to the model. It would be extremely interesting to consider m
as a random variable and let the model make predictions for the mass, but the tools
developed in Chapter 3 do not apply to the asymmetric situation of having the spectrum
of H and the variablem. However, since H andm (or a more general Dfinite) are not only
simultaneously but independently diagonalizable due to the external product structure.
We believe that, with signi�cant extra work, the tools from Chapter 3 can be adapted to
this situation.

4.2.1 The bosonic and fermionic actions

The rest of this section will be spent on getting the Dirac ensemble to a point where the
technology developed in Chapter 3 applies. The �rst step in this process is to compute
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the bosonic action from Equation 4.1 for our new product Dirac operator in terms of H,
i.e. translate the Dirac ensemble into random matrix model.

Lemma 4.2.2. For the Dirac operator D = D(H,m) as de�ned in Equation 4.3 we have

Tr(D2) = 4N Tr(H2)− 4 Tr(H)2 + 2N2m2,

Tr(D4) = 4N Tr(H4) + 12 Tr(H2)2 − 16 Tr(H) Tr(H3)

+ 2m2
(
4N Tr(H2)− 4 Tr(H)2

)
+ 2N2m4.

Proof. This is a fairly straightforward computation. We start by computing D2.

([H, •]⊗ σ1 +m⊗ σ2)2 = [H, •]2 ⊗ 1 + ([H, •] ◦m)⊗ σ1σ2 + (m ◦ [H, •])⊗ σ2σ1 +m2 ⊗ 1,

= [H, •]2 ⊗ 1 +m2 ⊗ 1,

=
(
[H, •]2 +m2

)
⊗ 1.

To get the trace of the commutator we use the isomorphism of vector spaces CN ⊗
CN →MN(C) given by v⊗w 7→ |v〉〈w|. Under this isomorphism, taking the commutator
with the self-adjoint H becomes H ⊗ 1N − 1N ⊗H. The subscript on 1N denotes that it
is the N ×N identity matrix. Then

D2 =
(
(H ⊗ 1N − 1N ⊗H)2 +m2

)
⊗ 12,

=
(
H2 ⊗ 1N − 2H ⊗H + 1N ⊗H2 +m21N ⊗ 1N

)
⊗ 12

from which the trace is easily obtained.
We square this again to get

D4 =
(
H4 ⊗ 1N + 6H2 ⊗H2 + 1N ⊗H4 − 4H3 ⊗H − 4H ⊗H3

)
⊗ 12

+ 2m2
(
H2 ⊗ 1N − 2H ⊗H + 1N ⊗H2

)
⊗ 12 +m41N ⊗ 1N ⊗ 12.

The next step is to compute the fermionic part of the action, F (D). Since this is
related to the determinant, or Pfa�an, of D we are interested in the spectrum of D in
terms of the spectrum of the parametrizing matrix H. This will also be relevant when
we want to �nd the spectral density of D from the spectral density of H.

Lemma 4.2.3. The spectrum of D = D(H,m) as in Equation 4.3 is{
−
√

(λi − λj)2 +m2,
√

(λi − λj)2 +m2

}
i,j=1,...,N

where {λi}Ni=1 is the spectrum of H.

Proof. Let {ei}Ni=1 be a basis of orthonormal eigenvectors for H with eigenvalues {λi}Ni=1

and Ei,j the matrix units relative to that basis. Then

D(Ei,j ⊗ v) = (λi − λj)Ei,j ⊗ σ1v +mEi,j ⊗ σ2v
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so in the basis {Ei,j ⊗ ek} with i, j = 1, . . . , N and k = 1, 2 we see that D acts like a
direct sum of N2 block matrices(

0 (λi − λj)− im
(λi − λj) + im 0

)
so that it has spectrum{

−
√

(λi − λj)2 +m2,
√

(λi − λj)2 +m2

}
i,j=1,...,N

.

Lemma 4.2.4. For D = D(H,m) as in Equation 4.3 we have∫
Ber

e−〈ψ,Dψ〉 dψ = (−1)N
2
∏
i,j

(
(λi − λj)2 +m2

)
,∫

Ber

e−
1
2
〈Jψ,Dψ〉 dψ = (im)N(−1)

N2−N
2

∏
i<j

(
(λi − λj)2 +m2

)
where i, j run over 1, . . . , N .

Proof. We will prove these two statements by di�erent means, even though both methods
work in both cases, for illustration purposes.

The �rst claim easily follows from the spectrum of D, Lemma 4.2.3, and Lemma 4.1.7
which tells us this integral is the determinant of D.

The second claim we will prove from the de�nition of the fermionic integral. Let as
before {ei}Ni=1 be an orthonormal basis of eigenvectors for H with eigenvalues {λi} and

let {Ei,j} be the matrix units relative to this basis. Further, let v1 =

(
1
0

)
and v2 =

(
0
1

)
be the standard basis for C2 so that {Ei,j ⊗ va} forms a basis for MN(C)⊗C2. To start,
by De�nition 4.1.5, we wish to know the matrix elements

〈J(Ei,j ⊗ va), D(Ek,l ⊗ vb)〉 = 〈Ej,i ⊗ va, (λk − λl)Ek,l ⊗ σ1vb〉+ 〈Ej,i ⊗ va,mEk,l ⊗ σ2vb〉,
= ((λj − λi)〈va, σ1vb〉+m〈va, σ2vb〉) δj,kδi,l,
= ((λj − λi) + (−1)aim) δj,kδi,l(1− δa,b).

Let ψ = {ψ(i,j),a} be the coordinate functions corresponding to the basis {Ei,j ⊗ va},
then

〈Jψ,Dψ〉 =
∑
(i,j)

((λj − λi)− im)ψ(i,j),1ψ(j,i),2 +
∑
(i,j)

((λj − λi) + im)ψ(i,j),2ψ(j,i),1,

=
∑
(i,j)

((λj − λi)− im)ψ(i,j),1ψ(j,i),2 +
∑
(i,j)

((λi − λj)− im)ψ(j,i),1ψ(i,j),2,

=
∑
(i,j)

((λj − λi)− im)ψ(i,j),1ψ(j,i),2 +
∑
(j,i)

((λj − λi)− im)ψ(i,j),1ψ(j,i),2,

= 2
∑
(i,j)

((λj − λi)− im)ψ(i,j),1ψ(j,i),2
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where we �rst use the matrix elements, then swap the Grassmann generators in the
second sum, re-index the second sum, and realize for the �nal step that summing (i, j)
or (j, i) for i, j = 1, . . . , N is the same.

Further note that for (i, j) 6= (k, l) the products ψ(i,j),1ψ(j,i),2 and ψ(k,l),1ψ(l,k),2 com-
mute so that we can compute

e−
1
2
〈Jψ,Dψ〉

using the ea+b = eaeb formula for the exponential (the exponential on the Grassmann
algebra is de�ned by its, necessarily �nite, power series).

For each individual term in the sum we have

e−((λj−λi)−im)ψ(i,j),1ψ(j,i),2 = 1− ((λj − λi)− im)ψ(i,j),1ψ(j,i),2

as the square of ψ(i,j),1ψ(j,i),2 is zero. Then we get for the full exponential

e−
1
2
〈Jψ,Dψ〉 =

∏
i,j

(
1− ((λj − λi)− im)ψ(i,j),1ψ(j,i),2

)
so that∫

Ber

e−
1
2
〈Jψ,Dψ〉 dψ =

∏
i,j

((λi − λj) + im) = (im)N(−1)
N2−N

2

∏
i<j

(
(λi − λj)2 +m2

)

Observe that the proof of this lemma shows that the di�erence between the deter-
minant and the Pfa�an is really due to halving the number of generators from {ψi, ψi}
to {ψi}. This is possible with the real bilinear form 〈Jψ,Dψ〉 and is unrelated to the 1

2

appearing in the exponent. Indeed it is easy to check that removing that 1
2
simply leads

to a factor 2N
2
in the �nal answer.

But perhaps a more obvious question is why we compute the fermionic action for
both 〈ψ,Dψ〉 and 〈Jψ,Dψ〉, while so far we have said that the fermionic action is given
by 〈ψ,Dψ〉. This is related to the issue of fermion doubling that happens in the almost
commutative framework for the standard model, and that also happens here for the
almost fuzzy framework. While our goal in Equation 4.2 was to add one fermion to the
Dirac ensemble, the nature of the odd-odd product of spectral triples caused us to gain
two fermions (one right-handed and one left-handed).

This is similar to, although not quite the same as, the issue of fermion doubling
that was encountered when formulating the standard model of particle physics in almost
commutative noncommutative geometry. There both the base space and the �nite space
have a left- and right-handed structure as well as a particle anti-particle structure, leading
to a situation with too many fermions, some of which could be called unphysical (e.g.
those that have a left-handed spin according to the base space and a right-handed spin
according to the �nite space).

Multiple solutions have been o�ered for the fermion doubling problem. One approach
that works for the standard model but not for us is to change the �nite space, see for
example [3]. Another solution is to (if applicable) restrict the fermionic integral to the
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+1 eigenspace of Γ and consider the fermionic action 1
2
〈Jψ,Dψ〉 instead, see for example

[14].
Looking at the spectrum of D = D(H,m) in Lemma 4.2.3 we see that the �doubling

factor� C2 in the spectral triple causes a duplication of the eigenvalues. Indeed if m = 0
the spectrum of D is exactly two copies of the spectrum of [H, •] : MN(C) → MN(C).
This duplication of eigenvalues can be countered by considering the Pfa�an instead of
the determinant. The classical results on the fermionic integral, Lemma 4.1.7, then show
that this can be accomplished by introducing the J in the fermionic action.

We will take the easy way out of this problem for now and leave it ambiguous which
fermionic action we pick. Instead we say that the fermionic contribution is given by

F (D) =
∏
i<j

(
(λi − λj)2 +m2

)β2
2 . (4.4)

If β2 = 2 this corresponds to the action 〈Jψ,Dψ〉 and if β2 = 4 this corresponds to
the action 〈ψ,Dψ〉. Note that in both cases what we call the fermionic contribution
is only proportional to the actual fermionic integral computed in Lemma 4.2.4. The
proportionality constant is independent of H and can thus be absorbed into Z.

We choose the notation β2, and the factor 1
2
, by analogy with the Dyson exponent β

from random matrix theory. The parameter β2 can be thought of as a coupling constant
for the fermionic action, as we will see in the following, but in the current setup can only
take even integer values (where values higher than 4 are obtained by considering a higher
dimensional �nite space).

This means that our fermionic Dirac ensemble is given by the density

1

ZDirac
exp

(
−g4 Tr(D4)− g2 Tr(D2) + log(F (D))

)
.

with F (D) from Equation 4.4.

4.2.2 The eigenvalue model for the fermionic fuzzy model

There is one �nal problem when transforming this into a matrix model, and eventually
eigenvalue model, for H through D = D(H). Observe that the map HN → D is not
injective, as any scalar multiple of the identity matrix is mapped to the zero operator.
This means that the induced density on HN will not be �nite, since it is constant along
the paths t 7→ H + t1N . Alternatively we can take a peek forward to the application of
the tools from Section 3.2 and observe that U(x + t, y + t) = U(x, y). This implies that
the associated energy functional I(µ) is invariant under translations of the measure. In
particular there cannot be a unique minimizer to I, as any translated measure will have
the same energy.

The resolution to this is to manually put a probability density on the �bres of HN →
D. In our case we opt for the probability density proportional to e−aTr(H)2

for some a > 0,
the proportionality constant will be absorbed into the global normalization constant Z.
Since this probability density varies exclusively along the �bres of HN → D it does not
a�ect the probability of �nding any particular Dirac operator. But it does eliminate the
translation invariance, as shown in Lemma 4.3.4.
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It might appear that a more natural �x to this problem is to consider the subspace of
traceless self-adjoint matrices, on which the map HN → D is an isomorphism of vector
spaces. This is equivalent to choosing the probability density δ0(Tr(H)) on the �bres,
which in terms of the eigenvalues of H is δ0(

∑
λi) and as such is a degree N interaction

(borrowing terminology from Section 3.2). On the other hand, the Gaussian density we
use becomes (

∑
λi)

2 =
∑
λiλj which is a degree 2 interaction. The technology developed

in Chapter 3 is only equipped to deal with interactions of �xed degree, so restricting to
the traceless matrices would invalidate those tools.

With the above observations in mind, the Weyl integration formula (see Section 1.2.1)
gives us the following eigenvalue density on RN :

1

Zeigen
exp

 −g4

(
4N
∑
λ4
i + 12 (

∑
λ2
i )

2 − 16 (
∑
λi) (

∑
λ3
i )
)

−g′2
(
4N
∑
λ2
i − 4 (

∑
λi)

2)− a (
∑
λi)

2

+β2

4

∑
i,j log ((λi − λj)2 +m2) + β

2

∑
i 6=j log (|λi − λj|)

 (4.5)

where g′2 = g2 + 2m2g4 and the unlabelled sums are over i, in all cases i, j run from 1 to
N .

We will brie�y recap where each term comes from.

� The �rst line is the quartic part of the quartic term in the bosonic action.

� The �rst term in the second line consists of the quadratic term of the action,
together with the quadratic part of the quartic term accounting for the change in
coupling constant from g2 to g′2.

� The second term in the second line accounts for the kernel of the map HN → D,
as discussed below Lemma 4.2.2. We use this term in Lemma 4.3.4, but the value
of a > 0 will turn out not to a�ect the spectral density.

� The �rst logarithmic term in the third line is the fermionic action, β2 is either 2
or 4. The factor β2 here justi�es us calling it the fermionic coupling constant. The
observant reader might note the discrepancy in the sum including i = j terms and
Equation 4.4. The di�erence is a scalar independent of λ so this is absorbed into
Zeigen.

� The second logarithmic term in the third line is the Jacobian that we pick up in
Weyl's integration formula. In our case β = 2 since we are working with complex
matrices, but we keep β as a variable to more easily deal with the m = 0 case, in
which case the two logarithmic terms combine to one with coe�cient β+β2

2
.

4.3 The spectral density: computations

In this section we will �rst prove that the tools from Chapter 3 apply to our fuzzy
fermionic Dirac ensemble and then do the associated computations for this speci�c en-
semble. To do this we �rst need to give the function U de�ning our eigenvalue model
and then verify that this function U satis�es the three parts of Assumption 3.1.
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Comparing the form of the eigenvalue model in Equation 3.3 and the eigenvalue
density for our fuzzy fermionic Dirac ensemble in Equation 4.5, we see that the degree of
our interaction is k = 2 and that we should de�ne the potential function U , for m 6= 0,
by

U(x, y) = g4 (2(x4 + y4) + 12x2y2 − 8(x3y + xy3))

+g′2 (2(x2 + y2)− 4xy) + axy − β2

4
log ((x− y)2 +m2) .

(4.6)

For m = 0 we de�ne U by this formula without the logarithmic term.
Recall from Section 3.2 that to this U we associate an energy functional

I(µ1, µ2) =

∫
R2

W (x, y) dµ1(x) dµ2(y)

with

W (x, y) = U(x, y)− β

2
log(|x− y|),

where β is replaced by β+β2 if m = 0. This is the main reason we keep track of β and β2

throughout all computations, it makes it easy to get m = 0 results without extra work.
It is also interesting to keep track of them as they function like coupling constants for
the strength of the native eigenvalue repulsion and the fermionic action allowing us to
arti�cially play with the �strength� of the fermionic action.

4.3.1 Check of the assumptions

We will establish the three parts of Assumption 3.1 for this function U , repeated here
for convenience and specialized to k = 2. U : R2 → R is a continuous function such that

1. U is invariant under permutation of its arguments.

2. There is a continuous function u : R → R such that U(x, y) ≥ u(x) for all y ∈ R
and u(x)− max(β,2)

2
log(1 + x2)→∞ as |x| → ∞.

3. There is a set of candidate measures Pcan ⊂ P(R) containing the minimizer of I,
such that for any probability measures µ, ν ∈ Pcan and any t ∈ [0, 1]

d2

dt2

∫
R2

U(x, y) d(µ+ t(ν − µ))⊗2(x, y) ≥ 0.

Certainly U de�ned in Equation 4.6 is continuous and well-de�ned on all of R, and is
invariant under the swap (x, y) 7→ (y, x). To establish the second and third property the
following lemma turns out to be very useful and essential, respectively. This highlights
the importance of the aTr(H)2 term added in Section 4.2.2 and is visualized in Figure
4.1.

Lemma 4.3.1. For U de�ned in Equation 4.6 we have

U(x+ t, y + t) = U(x, y)− axy + a(x+ t)(y + t),

and the same holds for the corresponding function W , as de�ned in De�nition 3.2.2.
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(a) a = 0 (b) a = 1

Figure 4.1: The function U(x, y) plotted over [−1, 1]2 for g4 = g2 = 0.1, m = 1, β2 = 2.
The second part of Assumption 3.1 requires U to be increasing as ‖(x, y)‖ → ∞. As
discussed in Section 4.2.2, this is not the case if U is based only on the (combined fermionic
and bosonic) action of D since that would leave a shift invariance U(x+t, y+t) = U(x, y)
corresponding to the kernel of the map HN → D (see Lemma 4.3.1). This shift invariance
can be seen in plot (a) and is broken by the aTr(H)2 term, as plot (b) shows.

Proof. The logarithmic parts of U and W are clearly invariant under this shift so we
consider Upol the polynomial part of U .

Consider the matrix

H =

(
x 0
0 y

)
,

and D = [H, •] as operator on M2(C). Then by Lemma 4.2.2 we have

Tr(D2) = 8(x2 + y2)− 4(x+ y)2 + 2N2m2,

= 4x2 + 4y2 − 8xy + 8m2,

and

Tr(D4) = 8(x4 + y4) + 12(x2 + y2)2 − 16(x+ y)(x3 + y3) + 2m2 Tr(D2) + 2N2m4,

= 4x4 + 4y4 + 24x2y2 − 16xy3 − 16x3y + 2m2 Tr(D2) + 8m4.

So

g4 Tr(D4) + g2 Tr(D2) = g4

(
4x4 + 4y4 + 24x2y2 − 16xy3 − 16x3y + 8m4

)
+ g′2

(
4x2 + 4y2 − 8xy + 8m2

)
,

= 2 (Upol(x, y)− axy) + 8m2(g′2 + g4m
2).
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Since H and H + t12 clearly induce the same D, the left-hand side of this equation is
invariant under the shift (x, y) 7→ (x + t, y + t) so the right-hand side must be as well.
Thus

Upol(x+ t, y + t)− a(x+ t)(y + t) = Upol(x, y)− axy.

Remark 4.3.2. We should �nally explain why the other single-matrix model that comes
up in the context of fuzzy geometries is absent from this discussion. This is the Dirac
ensemble with signature (1, 0) and Dirac operator D = {H, •}. In this ensemble the
map from the Hermitian matrices to Dirac operators is injective and de�nes a convergent
random matrix model on HN by itself.

The associated function U is very similar to the one we obtained for the (0, 1) model,
simply change the − signs in front of the Tr(H) Tr(H3) and Tr(H)2 terms to +. Because
of this similarity we get a similar plot of U as Figure 4.1a, but instead of U being constant
along lines x− y = c it is constant along lines with x+ y = c. So this ensemble does not
immediately �t into the theory from Chapter 3.

For signature (1, 0) there is no clear way to adjust U as we did for for signature (0, 1)
in Section 4.2.2. This means we cannot apply the same techniques to the signature (1, 0)
case blindly. It is likely that some relatively minor modi�cation of the theory in Section
3.2 applies, but this requires further work.

Additionally there is strong numerical evidence in [20] that the spectral density for the
(1, 0) is not symmetric, and thus in particular not unique. This means that the convexity
assumption will not hold for this model, even if the assumptions on the con�ning nature
of U , or U itself, are suitably changed.

Lemma 4.3.3. There is some R ∈ R such that

u(x) = inf
y∈R

U(x, y) ≥ 1

2
ax2

for |x| > R.

Proof. We compute, using Lemma 4.3.1,

u(x) = inf
y∈R

U(x, y),

= inf
y∈R

(U(0, y − x) + axy) ,

= inf
y∈R

(U(0, y) + ax(y + x)) ,

= ax2 + inf
y∈R

(
2g4y

4 + 2g′2y
2 − β2

4
log(m2 + y2) + axy

)
,

≥ ax2 + inf
y∈R

(
g4y

4 + 2g′2y
2 − β2

4
log(m2 + y2)

)
+ inf

y∈R

(
g4y

4 + axy
)
.

Using that g4 > 0, some basic calculus shows that the third term is proportional to x
4
3

and the second term is �nite. Thus we can �nd some R such that for |x| > R this lower
bound is bigger than 1

2
ax2.
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Lemma 4.3.4. Any measure that minimizes the associated energy functional of the fuzzy
fermionic eigenvalue model, Equation 4.6, has mean 0.

Proof. Suppose µ is any probability measure on R and let τt : R → R, τt(x) = x + t so
that {τ ∗t µ}t∈R is the family of translates of µ. Then

I(τ ∗t µ) =

∫
R2

W (x, y) dτ ∗t µ(x) dτ ∗t µ(y),

=

∫
R2

W (x, y) dµ(x− t) dµ(y − t),

=

∫
R2

W (x+ t, y + t) dµ(x) dµ(y),

=

∫
R2

W (x, y)− axy + a(x+ t)(y + t) dµ(x) dµ(y),

= I(µ) + 2aµ1t+ at2

using Lemma 4.3.1 and where µ1 is the mean of µ.
This means I(τ ∗t µ) is minimized when t = −µ1, i.e. exactly when τ ∗t µ is centered.

Proposition 4.3.5. The function U de�ned in Equation 4.6 satis�es Assumption 3.1
with the set of centered probability measures of compact support as candidate measures,
Pcan = {µ ∈ Pc(R) |µ1 = 0}.

Proof. The function U is clearly invariant under x ↔ y so the �rst property is satis�ed
and Lemma 4.3.3 gives the second property.

For the third property Lemma 4.3.4 shows that a minimizer of I must have mean
zero, and the �rst two properties already guarantee that a minimizer must have compact
support (see the discussion below Assumption 3.1). So any minimizer lies in the set of
candidate measures.

We again split the potential U into its logarithmic and polynomial parts

U(x, y) = Upol(x, y)− log(m2 + (x− y)2).

By Proposition 3.1.6 we have

−
∫
R2

log(m2 + (x− y)2) d(ν − µ)(x) d(ν − µ)(y) = 2

∫ ∞
0

e−m
2k 1

k
| ̂(ν − µ)(k)|2 dk ≥ 0.

To �nd the contribution of Upol �rst observe that∫
R2

xayb d(ν − µ)(x) d(ν − µ)(y) = νaνb − νaµb − µaνb + µaµb,

= (νa − µa)(νb − µb),

where as usual µk denotes the k-th moment of a measure µ. Using this we get∫
R2

Upol(x, y) d(ν − µ)(x) d(ν − µ)(y) = 12g4(ν2 − µ2)2 − 16g′2(ν1 − µ1)(ν3 − µ3)

− 4g′2(ν1 − µ1)2 + a(ν1 − µ1)2
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As µ, ν are candidate measures we have µ1 = 0 = ν1 and we �nd∫
R2

Upol(x, y) d(ν − µ)(x) d(ν − µ)(y) = 12g4(ν2 − µ2)2 ≥ 0,

so we are done.

Remark 4.3.6. Proposition 4.3.5 still holds for the Gaussian model where g4 = 0, g2 > 0.
In fact the only proof that needs to be adapted slightly is the proof of Lemma 4.3.3. The
results also hold for the case m = 0.

4.3.2 Computation of the spectral density

In this section we will do the computations required to obtain systems of equations for
ρ and the support, being either [−a, a] or [−b,−a] ∪ [a, b] (see the discussion at the end
of this section for why these cases are exhaustive). These systems will generally not be
exactly solvable, at least not as far as we have found, but they are su�cient for numerical
approximations that we will show in Section 4.4.

Since we established in Proposition 4.3.5 that the eigenvalue model for our fermionic
fuzzy (0, 1) Dirac ensemble satis�es the assumptions for Section 3.2, we know that The-
orems 3.1, 3.2, and 3.3 hold for the associated energy functional I and its equilibrium
measure µE. In particular the equilibrium measure is unique and can be found using the
tools from Section 3.4. We can take the set of even measures as our space of reduced
candidate measures since U(−x,−y) = U(x, y).

To start this process we make the assumptions in Assumption 3.2, so we assume the
equilibrium measure is given by

µE = ρ(x) dx

and
supp

(
µE
)

= Σ = ∪ri=1[ai, bi].

We further know that ρ(−x) = ρ(x) and that Σ is symmetric, since we have the set of
even measures as our reduced candidate measures.

The �rst stage of these computations is �nding U(x) and the set Π such that U ′(x)
can be extended to C \ Π.

U(x) =

∫
R
U(x, y) dµE(y),

=

∫
R
g4

(
2(x4 + y4) + 12x2y2 − 8(x3y + xy3)

)
+ g′2

(
2(x2 + y2)− 4xy

)
+ axy − β2

4
log
(
(x− y)2 +m2

)
dµE(y),

= 2g4x
4 + 2g4µ

E
4 + 12g4x

2µE2 − 8x3µE1 − 8xµE3

+ 2g′2x
2 + 2g′2µ

E
2 − 4g′2xµ

E
1 −

β2

4

∫
R

log
(
(x− y)2 +m2

)
dµE(y),

= 2g4x
4 + 2g4µ

E
4 + 12g4x

2µE2 + 2g′2x
2 + 2g′2µ

E
2 −

β2

4

∫
Σ

log
(
(x− y)2 +m2

)
dµE(y),
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so that

U ′(x) = 8g4x
3 +

(
24g4µ

E
2 + 4g′2

)
x− β2

2

∫
Σ

x− y
(x− y)2 +m2

dµE(y)

which has an analytic extension

U ′(z) = 8g4z
3 +

(
24g4µ

E
2 + 4g′2

)
z − β2

2

∫
Σ

z − y
(z − y)2 +m2

dµE(y) (4.7)

to C \ Π, Π = (Σ + im) ∪ (Σ− im). If instead m = 0 we instead get

U ′(z) = 8g4z
3 +

(
24g4µ

E
2 + 4g′2

)
z

on all of C. The second moment of µE = ρ(x) dx still appears in this expression, but this
can be expressed in terms of the other functions involved through Proposition 3.4.10. We
keep µE2 in the expressions to simplify the notation.

Let us start with two computational lemmas that we will use throughout this section.

Lemma 4.3.7. Let γΠ,ε be the clockwise racetrack of radius ε around Π = Σ± im, then

for any function f analytic on a neighbourhood of Π and satisfying f(z) = f(z), we have

lim
ε→0

∫
γΠ,ε

f(z)
U ′(z)√
s(z)

dz = πiβ2

∫
Σ

<
(
f(y + im)√
s(y + im)

)
ρ(y) dy.

Proof. We simply compute this, using that only the fractional part of U ′ causes singu-
larities around Π,

lim
ε→0

∫
γΠ,ε

U ′(z)√
s(z)

f(z) dz = lim
ε→0

∫
γΠ,ε

∫
Σ

−β2

2

z − y
(z − y)2 +m2

ρ(y) dy
f(z)√
s(z)

dz,

= −β2

2
lim
ε→0

∫
Σ

∫
γΠ,ε

f(z)√
s(z)

z − y
(z − y)2 +m2

dz ρ(y) dy,

= −β2

2

∫
Σ

(
−2πi

1

2

f(y + im)√
s(y + im)

− 2πi
1

2

f(y − im)√
s(y − im)

)
ρ(y) dy,

=
β2πi

2

∫
Σ

(
f(y + im)√
s(y + im)

+
f(y − im)√
s(y − im)

)
ρ(y) dy,

using that

resz=y±im

(
z − y

(z − y)2 +m2

)
= resz=0

(
z ± im

z2 ± 2zim

)
= resz=0

(
1

z + 2im
+

1

z

±im
z ± 2im

)
=

1

2
.

Finally, using the conjugacy property assumed for f and proved for
√
s in Lemma 3.4.5

we get the lemma.

Lemma 4.3.8.∫
Σ

yn
U ′(y)√
s+(y)

dy = −πiβ2

2

∫
Σ

Rn
Σ,m(y)ρ(y) dy − πi

[
U ′(z)√
s(z)

]
−(n+1)

where

Rn
Σ,m(y) = <

(
(y + im)n√
s(y + im)

)
.
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Proof. Using the same contours that were used in the proof of Proposition 3.4.9, consist-
ing of (clockwise) racetracks around Σ and Π and a (counter-clockwise) circle of large

radius applied to the function U ′(z)√
s(z)

, which has no singularities outside of Σ and Π, we
get

2

∫
Σ

yn
U ′(y)√
s+(y)

dy = lim
ε→0

∫
γΣ,ε

zn
U ′(z)√
s(z)

dz,

= − lim
ε→0

∫
γΠ,ε

zn
U ′(z)√
s(z)

dz − lim
R→∞

∫
γR

zn
U ′(z)√
s(z)

dz,

= −πiβ2

∫
Σ

<
(

(y + im)n√
s(y + im)

)
ρ(y) dy − 2πi

[
zn
U ′(z)√
s(z)

]
−1

,

Here we used Lemma 4.3.7 for the Π contour.

With these lemmas out of the way, we are ready to �nd the equation for ρ. By
Proposition 3.4.9 we get that

ρ(x) =
2

β

√
s+(x)

πi
p(x) +

2

β

√
s+(x)

πi
R(x)

where

p(z) =
∞∑
n=0

[
U ′(z)√
s(z)

]
k

zk0

and

R(x) =
1

2πi

∫
γΠ,ε

U ′(z)√
s(z)

dz

z − x
where γΠ,ε is a clockwise contour around Π at radius ε.

To �nd R(x) we can use Lemma 4.3.7 with f(z) = 1
z−x . We get

R(x) =
β2

2

∫
Σ

<
(

1√
s(y + im)

1

y + im− x

)
ρ(y) dy,

and de�ne

KΣ,m(x, y) =

√
s+(x)

πi
<
(

1√
s(y + im)

1

y + im− x

)
(4.8)

so that √
s+(x)

πi
R(x) =

β2

2

∫
Σ

KΣ,m(x, y)ρ(y) dy.

This gives us the following Fredholm integral equation

ρ(x) =
2

β

√
s+(x)

πi
p(x) +

β2

β

∫
Σ

KΣ,m(x, y)ρ(y) dy. (4.9)

The remaining computations, p(x), the support conditions and the expression for µE2 ,
depend more explicitly on the number of intervals of the support so we do those separately
below.
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One interval

If Σ = [−a, a] we get from Equation 4.7 and Lemma 3.4.6 that

U ′(z)√
s(z)

=

(
8g4z

3 +
(
24g4µ

E
2 + 4g′2

)
z − β2

2

∫
Σ

z − y
(z − y)2 +m2

ρ(y) dy

)(
1

z
+
a2

2

1

z3
+

3a4

8

1

z5
+ . . .

)
.

The polynomial p appearing in the equation for ρ is the positive part of the Laurent
series for U

′(z)√
s(z)

that converges around in�nity, which is

p(z) = 8g4z
2 + 4g4a

2 + 24g4µ
E
2 + 4g′2, (4.10)

where we use that the integral term of U ′ is asymptotically 1
z
so that it does not contribute.

This completes the equation for ρ in terms of a. To complete the problem we compute
the support conditions and expression for µE2 using Proposition 3.4.10.

The �rst condition is

0 =

∫ a

−a

U ′(x)√
s+(x)

dx

but this is automatically satis�ed as U ′(x) is odd and
√
s+(x) is even.

The normalization condition is

βπ

2i
=

∫ a

−a
x
U ′(x)√
s+(x)

dx.

which by Lemma 4.3.8 means

βπ

2i
= −πiβ2

2

∫ a

−a
R1

Σ,m(y)ρ(y) dy − πi
[
U ′(z)√
s(z)

]
−2

.

The term in the Laurent expansion at in�nity can be computed using our work for
the polynomial p(z) above Equation 4.10, but this time we are looking for the coe�cient
of z−2 instead of the positive part, so we get[

U ′(z)√
s+(z)

]
−2

= 3g4a
4 +

(
12g4µ

E
2 + 2g′2

)
a2 − β2

2
.

Gathering everything up we get the normalization condition

β + β2

(
1−

∫
Σ

R1
Σ,m(y)ρ(y) dy

)
= 6g4a

4 +
(
24g4µ

E
2 + 4g′2

)
a2 (4.11)

Then we conclude the one interval analysis by relating µE2 to a and ρ, by Proposition
3.4.10 we have

βπ

2i
µE2 =

∫ a

−a

U ′(x)√
s+(x)

x dx
[√
s(z)

]
−1

+

∫ a

−a

U ′(x)√
s+(x)

x2 dx
[√
s(z)

]
0
+

∫ a

−a

U ′(x)√
s+(x)

x3 dx
[√
s(z)

]
1
.
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The middle term is zero, both by symmetry of the integrand and because
√
s(z) has no

constant term in its Laurent expansion at in�nity. Using the normalization condition,
the Laurent expansion for

√
s(z) and Lemma 4.3.8 we get

µE2 = −a
2

2
+
β2

β

∫ a

−a
R3

Σ,m(y)ρ(y) dy +
2

β

[
U ′(z)√
s(z)

]
−4

We can calculate[
U ′(z)√
s(z)

]
−4

=
5

2
a6g4 + 3a4

(
3g4µ

E
2 +

1

2
g′2

)
− β2

2

(
a2

2
+ µE2 −m2

)
by expanding

z − y
(z − y)2 +m2

=
1

z

(
1 +

y

z
+
y2

z2
+ . . .

)(
1− m2

z2

1

1− y2

z2

+ . . .

)
.

This gives

(β + β2)

(
µE2 +

a2

2

)
= 5a6g4 + 3a4

(
6g4µ

E
2 + g′2

)
+ β2

(
m2 +

∫ a

−a
R3

Σ,m(y)ρ(y) dy

)
or solving for µE2

µE2 =
5a6g4 + 3a4g′2 − 1

2
(β + β2)a2 + β2

(
m2 +

∫ a
−aR

3
Σ,m(y)ρ(y) dy

)
β + β2 − 18a4g4

.

This expression is not terribly useful since it expresses µE2 in terms of a and ρ which
can also be done much easier by

µE2 =

∫ a

−a
x2ρ(x) dx.

At �rst glance, the �rst expression might be useful if m = 0. Since then it gives us
µE2 purely in terms of a and the coupling constants. This has the bene�cial e�ect that
instead of searching for a pair (a, µE2 ) that is self-consistent (so µE2 is indeed the second
moment of ρ) and satis�es the normalization condition we can let the computer search
for an a that satis�es the normalization condition.

However, it turns out that it is still easier to use the equation de�ning the second
moment even in the zero mass case. Since then we get

µE2 =

∫ a

−a
x2 2

β + β2

√
s+(x)

πi
p(x) dx,

=
2

(β + β2)
lim
ε→0

1

2πi

∫
γΣ,ε

z2
√
s(z)p(z) dz,

=
2

(β + β2)
lim
R→∞

1

2πi

∫
γR′

z2
√
s(z)p(z) dz,

= − 2

β + β2

[
z2
√
s(z)p(z)

]
−1
,
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where γR′ it the clockwise circle contour of radius R. This gives

µE2 = − 2

β + β2

(
−1

2
g4a

6 − a4

(
1

2
g4a

2 + 3g4µ
E
2 +

1

2
g2

))
or, when solved for µE2 ,

µE2 =
2g4a

6 + g2a
4

β + β2 − 6g4a4
. (4.12)

Two intervals

We proceed similarly to the single interval case above. For the polynomial p we get, now
using Lemma 3.4.7,

U ′(z)√
s(z)

=

(
8g4z

3 + (24g4µ
E
2 + 4g′2)z − β2

2

∫
Σ

z − y
(z − y)2 +m2

ρ(y) dy

)
×
(

1

z2
+
a2 + b2

2

1

z4
+

3a4 + 2a2b2 + 3b4

8

1

z6
+ . . .

)
.

So p, the positive part of this Laurent series, is

p(z) = 8g4z. (4.13)

This time the conditions from Proposition 3.4.10 that are not automatic by symmetry
are the order zero condition and the order two, or normalization, condition.

0 =

∫
Σ

U ′(x)√
s+(x)

dx,

βπ

2i
=

∫
Σ

U ′(x)√
s+(x)

x2 dx.

Using again Lemma 4.3.8, the order zero condition becomes

0 = β2

∫
Σ

R0
Σ,m(y)ρ(y) dy + 2

[
U ′(z)√
s(z)

]
−1

.

The Laurent coe�cient can be read o� again from the computation for p(z) and gives

0 = β2

∫
Σ

R0
Σ,m(y)ρ(y) dy + 8g4(a2 + b2) + (48g4µ

E
2 + 8g′2).

The normalization condition is similarly given by

β = β2

∫
Σ

R2
Σ,m(y)ρ(y) dy + 2

[
U ′(z)√
s(z)

]
−3

and

2

[
U ′(z)√
s(z)

]
−3

= 2g4

(
3a4 + 2a2b2 + 3b4

)
+ (24g4µ

E
2 + 4g′2)(a2 + b2)− β2.



4.3. The spectral density: computations 107

Gathering everything up again we get the conditions

0 = β2

∫
Σ

R0
Σ,m(y)ρ(y) dy + 4g4(a2 + b2) + (24g4µ

E
2 + 4g′2), (4.14a)

β + β2

(
1−

∫
Σ

R2
Σ,m(y)ρ(y) dy

)
= 2g4

(
3a4 + 2a2b2 + 3b4

)
+ (24g4µ

E
2 + 4g′2)(a2 + b2).

(4.14b)

We can again express µE2 in terms of a, b and ρ using Proposition 3.4.10, but it turns
out we do not need to do this. Since in the two interval case p(x), and thus ρ, does not
depend on µE2 we can simply compute ρ from a choice of a and b and then compute the
corresponding µE2 by

µE2 =

∫
Σ

x2ρ(x) dx.

We do however for future reference compute this equation in the m = 0 case, where
we get the same simpli�cation as for the single interval case.

µE2 = − 2

β + β2

[
z2
√
s(z)p(z)

]
−1
,

= − 16g4

β + β2

[√
s(z)

]
−4
,

=
g4

β + β2

(
a6 − a4b2 − a2b4 + b6

)
.

Which, rewritten slightly with future work in mind, is

µE2 =
g4

β + β2

(
a2 + b2

) (
a2 − b2

)2
. (4.15)

Three or more intervals

For the quartic action the support of ρ cannot consist of three or more intervals, at least
in the m = 0 case. There are two ways to conclude this.

The �rst, more intuitive, explanation is that a quartic polynomial with positive leading
coe�cient has at most two minima. The eigenvalue model will be in the single interval
phase if the polynomial g4x

4 + g2x
2 has one minimum, or when the barrier separating

the two minima is small enough compared to the eigenvalue repulsion. It will transition
to the two interval phase when the barrier separating the minima becomes too large.

The second explanation relies on counting the degrees of the various polynomials
involved in ρ. If the potential of D has degree 2n, U ′ will be degree 2n − 1. So the
degree of p will be 2n−1−r. On the other hand, the sign of

√
s+(x) changes across each

gap between intervals, so in order for ρ(x) ∝
√
s+(x)p(x) to be positive we need p(x) to

change sign r − 1 times as well. So we need 2n− 1− r ≥ r − 1, or n ≥ r.
For an eigenvalue model with a fermion of �nite mass the same should hold, but we do

not yet have a formal proof. The intuitive explanation carries over, although we expect
the phase transition to occur for a lower barrier (so less negative g′2) since the eigenvalue
repulsion caused by the fermion is relatively weaker in the presence of a mass. The more
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precise argument fails for m small, since now ρ(x) ∝ (1 − K)
√
s+(x)p(x) where K is

the integral operator with kernel KΣ,m(x, y). For m large enough (depending on Σ) the
operator K will have norm less than 1, so that the degree counting argument does carry
over.

All tools we used for the quartic model can also be applied to higher degree models,
but the quartic already exhibits a phase transition and thus su�ces for the goals of this
project.

4.4 Results of the spectral density

We will start this section with some general observations about Equation 4.9, followed
by an analysis of the m = 0 models and then numerical results for �nite mass. In
particular we �nd the phase transition in the m = 0 quartic Dirac ensemble using the
same techniques as in [39, 20], to verify our results.

Before we start let us gather the results from Section 4.3.2 in one convenient spot.

Single interval problem:

ρ(x) =
2

β

√
a2 − x2

π

(
8g4x

2 +
(
4g4a

2 + 24g4µ
E
2 + 4g′2

))
+
β2

β

∫
Σ

KΣ,m(x, y)ρ(y) dy,

(4.16a)

β + β2

(
1−

∫
Σ

R1
Σ,m(y)ρ(y) dy

)
= 6g4a

4 +
(
24g4µ

E
2 + 4g′2

)
a2, (4.16b)

µE2 =

∫
Σ

x2ρ(x) dx, (4.16c)

Two interval problem:

ρ(x) =
2

β

√
(x2 − a2)(b2 − x2)

π
8g4|x|+

β2

β

∫
Σ

KΣ,m(x, y)ρ(y) dy, (4.17a)

0 = β2

∫
Σ

R0
Σ,m(y)ρ(y) dy + 8g4

(
a2 + b2

)
+
(
48g4µ

E
2 + 8g′2

)
, (4.17b)

β + β2

(
1−

∫
Σ

R2
Σ,m(y)ρ(y) dy

)
= 2g4

(
3a4 + 2a2b2 + 3b4

)
+
(
24g4µ

E
2 + 4g′2

) (
a2 + b2

)
,

(4.17c)

µE2 =

∫
Σ

x2ρ(x) dx, (4.17d)

where

KΣ,m(x, y) =

√
s+(x)

πi
<
(

1√
s(y + im)

1

y + im− x

)
and

Rn
Σ,m(y) = <

(
(y + im)n√
s(y + im)

)
.
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Here we have also used Lemmas 3.4.6, 3.4.7 to evaluate
√
s+(x) in the equations for ρ.

Next we can see that this equation is consistent with an even solution. By the
properties of

√
s from Lemma 3.4.5 we get

KΣ,m(−x,−y) =

√
s+(−x)

πi
<
(

1√
s(−y + im)

1

−y + im+ x

)
,

= (−1)r+1

√
s+(x)

πi
<
(

(−1)r√
s(y − im)

−1

y − im− x

)
,

=

√
s+(x)

πi
<

(
1

√
s
(
y + im

) 1

y + im− x

)
,

=

√
s+(x)

πi
<

(
1

√
s(y + im)

1

y + im− x

)
,

=

√
s+(x)

πi
<
(

1√
s(y + im)

1

y + im− x

)
= KΣ,m(x, y).

Moreover, if r = 1 (or odd in general) p(x) and
√
s+(x) are both even, while if r = 2 (or

even in general) both are odd, so that their product is still even.

We also note that the m = 0 case agrees with the m→ 0 limit, as for m→ 0 we get

lim
m→0+

KΣ,m(x, y) = lim
m→0+

√
s+(x)

πi
<
(

1√
s(y + im)

1

y + im− x

)
,

= lim
m→0+

1

π
=
( √

s+(x)
√
s(y + im)

1

y + im− x

)
,

=
1

π
lim
m→0+

=
(

1

y + im− x

)
,

=
1

π
lim
m→0+

=
(

y − im− x
(y − x)2 +m2

)
,

= −δ(y − x).

So the KΣ,m integral becomes β2

β
ρ(x) which has the e�ect of changing β to β + β2. The

functions Rn
Σ,m(y) converge to 0 as m goes to zero, since

√
s(y + im) converges to the

purely imaginary
√
s+(y) while (y+ im)n converges to yn, so the support conditions also

behave nicely in the limit.

In the limit m→∞ the kernel KΣ,m converges to 0 while the functions Rn
Σ,m converge

to 1 by the asymptotic properties of
√
s from Lemma 3.4.5. So this limit appears to have

the e�ect of simply setting β2 = 0, however one should note that g′2 = g2 + 2g4m
2 so that

the potential for H becomes in�nitely con�ning. By Lemma 4.2.3 this means that the
spectrum of D would become two δ peaks at ±m. If one instead adjusts g2 such that g′2
remains constant, the m→∞ limit reproduces the purely bosonic β2 = 0 models.
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4.4.1 The m = 0 case

The zero mass case equations can be obtained from Equations 4.16, 4.17 by �rst setting
β2 = 0 and then replacing β by β + β2. In the Gaussian case, g4 = 0, g2 > 0, the model
is well-known to give the Wigner semi-circle law for ρ [40], and this indeed follows for us
as well with the system becoming

ρ(x) =
8g2

β + β2

√
a2 − x2

π
,

β + β2 = 4g2a
2.

This system is easily checked to indeed be normalized and has a valid solution for all
g2 > 0, so as expected there is no phase transition in the Gaussian model.

The quartic problem for m = 0 is given by

ρ(x) =
2

β + β2

√
a2 − x2

π

(
8g4x

2 +
(
4g4a

2 + 24g4µ
E
2 + 4g2

))
,

β + β2 = 6g4a
4 +

(
24g4µ

E
2 + 4g2

)
a2,

µE2 =
2g4a

6 + g2a
4

β + β2 − 6g4a4
,

for the solution with Σ = [−a, a] and

ρ(x) =
2

β + β2

√
(x2 − a2)(b2 − x2)

π
8g4|x|,

0 = 8g4

(
a2 + b2

)
+
(
48g4µ

E
2 + 8g2

)
,

β + β2 = 2g4

(
3a4 + 2a2b2 + 3b4

)
+
(
24g4µ

E
2 + 4g2

) (
a2 + b2

)
,

µE2 =
g4

β + β2

(
a2 + b2

) (
a2 − b2

)2
,

for Σ = [−b,−a]∪ [a, b], using Equations 4.12, 4.15 for the consistency conditions on µE2 .

Our main goal with this section is to locate the transition between these two phases.
With this in mind let ρ1 denote solutions to the single interval problem and ρ2 solutions
to two interval problems. There are several ways to �nd this, the �rst is to identify
when ρ1(x) starts to fail to be a positive function. This is done by �nding the coupling
constants for which ρ1(0) = 0. A second way is by solving the support conditions for
Σ = [−b,−a] ∪ [a, b] and �nding for which values of the coupling constants this solution
is valid, in the sense that 0 < a < b.

This second way turns out to be the more convenient, although it is not a priori
clear that it �nds the precise phase transition. We can simply check this afterwards. To
simplify notation while solving the system of support and consistency equations, let us
introduce some short hand:

x = a2 + b2, y = a2 − b2, z = µE2 , G2,4 =
g2,4

β + β2

.
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Figure 4.2: The spectral density of the matrix H in the model with m = 0, β = 2, β2 = 2,
g4 = 1 for varying values of g2, here gc = −4

√
2 is the phase transition for the model

with the given values for the other coupling constants.

Thus we want to solve
0 = 4G4x+ 24G4z + 4G2,
1 = 2G4 (2x2 + y2) + 24G4xz + 4G2x,
z = G4xy

2.

This system is solvable through some straightforward algebra that we will not repeat
here, and one �nds that the unique solution is given by

x = −1

4

G2

G4

, y = − 1√
2G4

, z = −1

8

G2

G4

.

Returning to our actual variables, this means

a2 = −1

8

g2

g4

− 1

2

√
β + β2

2g4

, b2 = −1

8

g2

g4

+
1

2

√
β + β2

2g4

, µE2 = −1

8

g2

g4

.

which is a valid solution if
g2 ≤ −2

√
2
√
g4(β + β2). (4.18)

This suspected location for the phase transition is in agreement with the phase transi-
tion found analytically and through Monte-Carlo simulations in [20], with the observation
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that they have β = 2, β2 = 0 and that their coupling constants gi,b are gi,b = 2gi,f in
terms of our coupling constants gi,f . The di�erence in coupling constants is caused by
the dimension increase from the addition of fermions. Note that this is not in agreement
with [39] due to some minor calculation errors in loc. cit..

We can check this location for the phase transition with our �rst approach by verifying

that if g2 = −2
√

2g4(β + β2), a2 =
√

β+β2

g4
and µE2 = −1

8
g2

g4
solves the system for the one-

interval density ρ1 and has ρ1(0) = 0. This is again a straightforward bit of algebra that
we will not repeat here. Finally observing that ρ1(0) is decreasing in g2 con�rms the
location of the phase transition.

We can �nd the spectral density of H for any set of coupling constants β, β2, g2, g4

if m = 0 by solving the above system. While it is possible to solve the corresponding
systems exactly the graphs in this section have been generated using numerical approxi-
mations to test the systems necessary for the m 6= 0 case.

Let us discuss the e�ect of the various coupling constants, this discussion is based
on two e�ects that together describe the main phenomena visible in the spectral density.
The �rst major coupling constant to vary is g2, as g2 becomes negative the potential
g4x

4 + g2x
2 takes on the shape of a double well. The eigenvalues will tend to be found

Figure 4.3: The spectral density of D in the model with m = 0, β = 2, β2 = 2, g4 = 1 for
varying values of g2, here gc = −4

√
2 is the phase transition of H for the model with the

given values for the other coupling constants. The colours correspond to those in Figure
4.2.
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near the minima of these wells, this is not obvious since the potential for H is more
complicated than the potential for D, but the symmetric solution causes the potential
for H to be approximately quartic as well.

This e�ect is countered by the eigenvalue repulsion inherent in unitarily invariant
matrix ensembles. The strength of this is governed by the Dyson exponent β, and in our
model strengthened by the fermionic action, governed by the coupling constant β2. The
eigenvalue repulsion prevents all eigenvalues from sitting at the minima of the potential.
The phase transition computed above corresponds to the balancing point where the
repulsive force between the eigenvalues becomes strong enough to push eigenvalues above
the barrier separating the wells of the g4x

4 + g2x
2 potential.

These e�ects can be seen in Figures 4.2, 4.4 and 4.5. In Figure 4.2 we vary g2.
Initially, for g2 = 2 there is no double well and all eigenvalues are clustered around zero.
For g2 = 0 we see the inaccuracy caused by the di�erence between the purely quartic
potential for D and the e�ective potential for H as there is already a hint of separation
for the eigenvalues. As g2 decreases the double well nature becomes more obvious until
for g2 < −4

√
2 the wells are too deep for the repulsive force.

Given the spectral density of H we can also �nd the spectral density of D using
Lemma 4.2.3. The spectral densities of D for various values of the coupling constants
can be found in Figure 4.3.

Figure 4.4: The spectral density of the matrix H in the model with varying β+β2, m = 0,
g4 = 1 and in the left plot g2 = 0 and g2 = −6 in the right plot. The e�ect of raising
β + β2 is to strengthen the repulsive force in the spectrum, so it will tend to spread out
the spectral density. The phase transition in terms of β2 for the g2 = −6 model happens
at β2 = 5

2
, so when β + β2 = 9

2
and can be seen in the right graph.

There are some observations that can be made based on Figure 4.3 for the spectral
density of D. The spectral density for H generally consists of two peaks, they may
overlap almost completely (g2 = 2), overlap partially (g2 = 0,−2,−4) or be disjoint
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Figure 4.5: The spectral density of the matrix H in the model with varying g4 andm = 0,
β = 2, β2 = 2, g2 = −8. The e�ect of increasing g4 is, as expected, to con�ne the spectral
density. In this case the phase transition occurs at g4 = 2, with the connected phase for
larger values of g4.

(g2 < gc). Correspondingly, the spectrum of D consists of three peaks, with the center
peak corresponding to di�erences of eigenvalues within one peak of H and the two outer
peaks consisting of inter-H-peak di�erences. These peaks also show various degrees of
overlap, from complete overlap (g2 = 2, 0) to less overlap (g2 = −2,−4, gc,−6) to three
disjoint peaks (g2 = −8). It is interesting to note that these changes, which might also
warrant the name phase transition, occur at di�erent places than the phase transition
for the spectral density of H. These �phase transitions� for D have not yet been located
analytically.

In Figure 4.4 we investigate the opposite e�ect where we adjust the repulsive force
rather than the depth of the wells. For g2 = 0 we see that strengthening the repulsive
force, increasing β + β2, spreads out the eigenvalues as expected. For g2 = −6 we see
that the eigenvalues are pushed apart and that for β+β2 = 6 this e�ect is strong enough
to once again overcome the barrier between the wells.

Figure 4.5 shows the e�ect of varying g4. As expected a stronger g4 is more con�ning
for the eigenvalues. This con�ning e�ect can, as Equation 4.18 shows, cause a phase
transition by reducing the size of the wells to the point where the repulsive force can
once again overpower the barrier.
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4.4.2 Numerical analysis for �nite mass

We will now present the results of a series of numerical approximations of the spectral
densities of H and D for �nite masses. Before we get to the results let us brie�y describe
the process by which these results were obtained.

We use a Riemann-sum-esque approximation for our functions, we choose some res-
olution ∆x and consider a vector ~x = (x1, . . . , xM) of points in Σ separated by ∆x. A

function f is then replaced by the vector ~f = (f(x1), . . . , f(xM)) and the integral kernel
KΣ,m(x, y) becomes the matrix K = (K(xi, xj))

M
i,j=1. This reduces the Fredholm integral

Equation 4.9 to a linear equation(
1− β2

β
K∆x

)
~ρ =

2

β

~√s+

πi
� ~ρ (4.19)

where � is component-wise multiplication of vectors. The support conditions for the
single interval problem become

β + β2

(
1− ~R1

Σ,m · ~ρ∆x
)

= 6g4a
4 +

(
24g4µ

E
2 + 4g′2

)
a2, (4.20a)

µE2 = (~x� ~x) · ~ρ∆x, (4.20b)

where · is the dot product of vectors. The conditions for the two interval problem can
be encoded similarly.

Given a choice of a (and b, in the two interval case) and µE2 a programming language
like MATLAB has little trouble computing ~ρ from Equation 4.19 as well as both sides of
the system in Equation 4.20. We were unfortunately unable to reliably have the computer
�nd values of a, b and/or µE2 that make the support conditions close to correct.

Instead we have landed on the following procedure to establish numerics, di�ering
slightly between the one and two interval cases. In the two interval case we have ostensibly
three parameters we need to guess, a, b and µE2 . However, looking at Equation 4.17a we
note that ρ is una�ected by µE2 so that the second moment only features in the support
conditions. Hence we can, given a choice of a and b, compute ρ, compute µE2 and check
how far the support conditions are from being true. This gives us a two parameter search
space.

Starting from a manually estimated range for a and b we generate the graphs seen in
Figure 4.6. We use two normalization conditions, one coming from the general theory
as in Equation 4.17c and one corresponding to

∫
ρ(x) dx = 1 since the latter turns out

to be useful and is easily computed, and the �moment zero� condition corresponding to
Equation 4.17b. In the fourth graph of Figure 4.6 we see the three, approximate, contours
where each individual support condition is true. The actual values of a and b for the
given coupling constants then correspond to the intersection of these contours.

These values can be read o� from the graph and then manually further optimized.
The goal that turned out to be feasible in general is to get the di�erence between the
sides of the support conditions to be on the order of 0.01 to 0.001 while both sides of the
equations tend to be on the order of 1 to 10.

For the single interval case the procedure is very similar, but with a and µE2 as
parameters instead of a and b. The place of the third graph in Figure 4.6 is then taken
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Figure 4.6: Output of the MATLAB program used to estimate the correct values of a
and b for a particular model. The �rst graph shows the value of Σ(~ρ∆x)− 1, the second
graph shows the value of the left-hand side minus the right-hand side of the normalization
condition in Equation 4.17c. The third graph shows the left-hand side minus the right-
hand side of the condition in Equation 4.17b. The red line in the �rst three graphs is
the contour of the surface at 0. These contours are also plotted in the fourth graph, the
correct value of (a, b) corresponds to the (approximate) intersection of the three contours.

by the self-consistency condition corresponding to µE2 =
∫
x2ρ(x) dx. Since in the single

interval case µE2 a�ects ρ there is feedback3 between the chosen parameter value µE2 and
the actual second moment of ρ. It is worth mentioning that in the single interval case
the two normalization conditions coincide almost perfectly in all trials.

Let us now explain the e�ect the mass has on the spectral densities. There are two
main e�ects that play a role for the spectral density of H. The �rst e�ect is the changing
of the coupling constant g2 to g′2 = g2 + 2g4m

2. This makes the potential increasingly
con�ning as m increases, so that in the m→∞ limit the spectral density of H becomes
point-like. The second e�ect is that the mass term lowers the repulsive force due to
the fermions. As m grows the eigenvalues remain con�ned in the same interval (really
a slightly smaller interval due to the �rst e�ect) so λi − λj remains of the same order.
Therefore if m grows the term

−β2

4
log
(
(λi − λj)2 +m2

)
becomes less and less sensitive to the eigenvalues and more dominated by the mass term.

These e�ects and their balance can be seen in Figure 4.7. For m = 0 the model is
exactly at its phase transition, as m starts to increase both e�ects start to play a role.
The increasing g′2 shrinks the total support of the spectral density, but the reducing
eigenvalue repulsion starts out dominant and pushes the model to a two-interval phase

3This feedback can be computed given a, since changing µE
2 changes ρ by adding a multiple of

√
s+.

We chose not to do these computations in the interest of e�ciency since we could simply reuse the code
developed for the two interval case.
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Figure 4.7: The spectral densities of H and D for the model with β = 2, β2 = 2,
g2 = −4, g4 = 1

2
and varying masses. The spectral density is only shown for x > 0 since

it is symmetric. The irregularities in the spectral density of D are numerical artefacts.

for m = 1
2
and m = 1. As m continues to increase the e�ect of g′2 becomes ever stronger

while the relative e�ect of the reduced eigenvalue repulsion becomes less, so the model
transitions back to a single interval phase. The exact point at which this occurs might
be interesting to determine, and from trial and error appears to be just below m = 1.1.

This shifting of the phase transition due to reduced eigenvalue repulsion is further
shown in Figure 4.8. The phase transition would be expected at g2 = −4 in the massless
case, but for m = 1 the model is still in the two interval phase at g2 = −4. Besides
this there is very little evident impact of the mass when compared to Figures 4.2 and 4.3
besided the shifting of the Dirac spectrum.

In Figure 4.9 we look at the e�ect of the mass if g′2 is kept constant, so g2 is adjusted
with the mass. As expected the behaviour can be explained entirely by the reduction of
eigenvalue repulsion, with the spectral density shrinking into the wells of the potential,
one can also observe that the e�ect of the mass on the eigenvalue repulsion diminishes
quickly as m grows. If m would continue to become larger beyond m = 5 the system
would not reach a phase transition since g′2 = −3 > −4 which is the location of the phase
transition for the model with g2 = −3, g4 = 1, β = 2 and β2 = 0. As m increases only
the eigenvalue repulsion due to β2 shrinks, so the base repulsion of β remains.

From both Figures 4.7 and 4.9 the e�ect of the mass on the spectral density ofD can be
seen. By Lemma 4.2.3 the spectral density is only non-zero outside of [−m,m]. Outside
of that the spectral density is essentially squished as the di�erences of the eigenvalues of
H only shrink and the m term in

√
(λi − λj)2 +m2 becomes dominant.
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Figure 4.8: The spectral densities for H and D for the model with m = 1, β = 2, β2 = 2,
g4 = 1

2
and varying g2. For the spectral density of D only the part greater than m = 1

is plotted, the density is zero on [−1, 1] and symmetric. In the massless model the phase
transition for H should occur at g2 = −4. The minor irregulirities in the densities of D
are numerical artefacts.

Figure 4.9: The spectral densities of H and D for the model with β = 2, β2 = 2, g4 = 1
and g′2 = −3 for varying masses m. Note that we are keeping g′2 = g2 + 2g4m

2 constant.
The spectral density of D is only shown for x > 0 since it is symmetric. The density is
0 on the interval [−m,m] by Lemma 4.2.3.
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